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1. Introduction. We construct (unlabeled)
interacting Brownian motions, so-called infinite
dimensional Wiener processes with interaction,
by using Dirichlet form theory.

(Labeled) interacting Brownian motions are
infinitely dimensional diffusion processes with
state space (Rd)N given by the following SDE;

1
(1.1) dX/ dB ,

-ff Vq)(X/ X/)dt
=1,

(1 _< i < oo),
where B are independent Brownian motion on
Ra. When q) Cao(Ra), this equation was solved
by Lang [3], [4]. (see [1], [5], [8], [11], [121 for
further development). The O-valued diffusion
process associated with (1.1) (unlabeled interact-
ing Brownian motion) is

’’t ,(3x, (6a is the delta measure at a).

Diffusion processes (Po)oo obtained in Corollary
1.3 below is corresponds to t. We refer to
Theorem 3 in [7] with Remark (3,4) after that for
the precise meaning of correspondence and related
open problems.

We assume interacting potential is super
stable and lower regular in the sense of Ruelle,
and there exists a upper semicontinuous function
) that are regular in the sense of Ruelle and
dominates q) from above. We remark itself is
not necessarily upper semicontinuous; q) needs
no regularity more than measurability. We hence-
forth generalize results in [7] and [1 3].

Let be the set of all locally finite con-
figurations on Ra. Here a configuration 0 is a
Radon measure of the form 0 26, where
(x) is a finite or infinite sequence in Ra

with no
cluster points. We endow with the vague topol-
ogy; O is a Polish space with this topology.

Let : Ra--R U (oo) be a measurable
function such that #(x) (-- x). We assume:
(#.1) (b is super stable in the sense of Ruelle.
(see [91 and [101).
(8).2) is lower regular in the sense of Ruelle;

there exist a positive, decreasing function q" R+- R+
satisfying

f p(t te-dt <
O(x) > p([xl) for allx Ra.

(.3) There exists a upper semicontinuous func-
tion " RR U {} and a constant R > 0
such that

(x) (x) for all x R,
(x) (Ix [) for all Ix R,
(x) if and only if (x) .

Here is same as (.2).
We remark by (.1) is bounded from be-

low. By (.1) (.3) for each z 0 there ex-
ist (grand canonical) Gibbs measures with pair
potential and activity z ([10]). The definition
of Gibbs measure will be given in Section 2.

We consider a symmetric bilinear form 8 on
O’

$ (f g) ]_D f g] d.
Here D[f, g] is given

D[f, g](0) 2, V](x)"
Here 7i ()xa, and" means the inner

product on land 9 in the right hand side are
permutation invariant functions given by f(O)
]() and 9(0) 9(), where (i) is such
that 0 6,. Bilinear map D[f, 9] is defined

loc.on the space of local, smooth functions on
O, defined in Section 2. Let

{f ’" , f) < , [Iflle(o,.) < }.
The purpose of this paper is to prove (g, ) is

Lclosable on (O, ).
Theorem. 1.1. Assume (.1) (.3). Let

be a Gibbs measure with potential . Then (,
L) is ctosabte on (0, ).

Remark 1.1. In the previous work [7] we
proved this result under more restrictive
assumptions (.1), (.2) and (.3’), (.4’) below"
(.3’) is tempered in the sense of Ruelle" there
exist a decreasing function ’ R+R

+ and a

constant R such that
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fg/p(t) < c,ta-ldt
(x) <- q)([x [) for all Ix -> R1.

(.4’) is upper semicontinuous on
{x" (x) < oo}, and {x’ (x) co} or
{x" (x) oo} {Ix[ < R.} for some R2.
We see (q.3’) and (.4’) are stronger than (.3).
Indeed, we can construct as follows’ q3(x)
max{ (x), q5 (Ix[)} Here q5 is the left con-
tinuous version of

Remark 1.2. For the existence of Gibbs me-
asures (.1), (.2), and (.3"),

(q. 3") f -(x)R[1-- e [dx<
are enough. It, however, seems difficult to replace
(.3) by (.3"). For even if the number of parti-
cle is finite, we need a certain assumption on de-
nsity of reference measures.

Let ($, fl )denote the closure obtained by
Theorem 1.1. Let O-- (0 O; 0 (r) i}
where r {Ix l-< r), Let ar denote density
functions of [2 given by (2.2). In order to prove
the quasi regularity of (g, ) we need
([2. 1) ]i=1i[2(O) < oo for all r N,
([2.2) O"r are bounded for all i, r N.
Combining Theorem 1.1 with Theorem 1 in [7]
we obtain"

Corollary 1.2. In addition to the assumptions
in Theorem 1.1, assume ([2.1) and ([2.2). Then ($,

L) is a quasi regular Dirichlet form on (, [2).
Combining this with results in [6] or ch. 7 in

[2] we obtain"
Corollary 1.3. Assume the same assumptions

in Theorem 1.2. Then there exists a diffusion
L{P0} 0co associated with (8, on (0, [2 ).

Moreover {P} eo is reversible with invariant mea-
sure [2.

2. Proof of Theorem 1.1. A function f on
19 is called local if ] is a[ 7rr] -measurable for
some r N. Here 7Cr" -*O is such that 7rr(O)

0 (" C {Ix[ <-- r} ). We say f is smooth if ] is
smooth, where ] is a permutation invariant func-
tion such that f(0) --f(x). (x-- (x i) is such

that 0 Sx,). Let o denote the set of all loc-
al, smooth functions on O.

Let ir denote /-product of r (Ix <- r).
For x- (x *) ir, 0 O, r s, let

Hr,o,s(Z)
Kk<gNi

E { (x-ve)},
tL(r,s) l<k<i

where (ye)e is such that 0 e6v and L(r, s)
{g; r <lyl s}. We set
(2.1) Hr,o (x)= limHr,o,s (x), whenever the
limit exists, s-

We remark H,o may be infinite. Let (z)
+z, wherez Ze. Let

O0 (0 O sup r Z 0( (z)) < oo}.
rN zZ,lzir

Recall that is bounded from below and
(x) 2--0 (Ix I). So it is easy to see that the
limit <-- oo in (2.1) exists for 0 Oo. For z
0 let

Z-1 Z
m,o(Z) ,0-. exp[-- H,,o(Z)],

Z fZr,o e [r Z .1, exp[-- H,o(z)]dx.
i=O

Here we set the summand to be 1 for i--0. Let
Mr,o be the a[Trr]-measurable function defined by

(x) for 01Mr,o (.01) mr,o Or.
Here x (x’) ’r is such that 01

Let ZCr" 0- O such that ZCr (0) 0 (Re

--r) and let Ar denote the Poison random mea-

sure with intensity le dx.
Definition 2.1. A probability measure [2 on

(0, N (O)) is called a (grand canonical) Gibbs
measure with potential # and activity z if

satisfies the following:

(G.1)/2(00) 1 (tempered),

(G.2) p (Ala[ rr1 (0) fAMr,o (0)dA (01 for
A a[rCr].

For [2 we define density functions as follows.

(2.2) ar(X ) i! mr,o(X

For f: O--* R let fri,O (X 0 X ir---, R de-
note the function satisfying the following;

(1) fri,o(X) is a permutation invariant function on

r for each 0 O.

(2) f,o<) (x) f;,o<z).(x if zcr (0 (1) ’r (0 (2)),
0(1), 0(2) O’.

(3) fi,o(X) f(O) for 0 O, (x (x i) is such
that rr (0) N 8,).

(4) fri,o(X) 0 for 0 O.
For a.e. 0, let Sr,o denote the bilinear form on

C() given by

S’r,O (f g) ;D f, g] (x mr,o (X dx

Lemma 2.1. For a.e. 0 (Sir,o, C (ir)) is clos-
Z mr,odx)able on (r,
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Proof Let Fn- (x Re’, (x) _> n) and

Fn(Y) Fn at- y. Let 0 Oo and i, r N be fix-
ed. We set

O.- (x- (x) r;
dist.(x k Fn(yj)) > 0 for all k j
dist.(x Fn(XO) > 0 for all

Here {yJ} is such that 7rc(0) cd. Then since
) is bounded on \Fn, ])(x)] <- (p (]x]) for
Ix] --> R and 0 0o, we see

2sup( I(x- y)l;x (x) e On} < c.
k=l

Hence by Lebesgue’s convergence theorem

2: {E q5 (x=1 )} is upper semicontinuous
on 0n. So
h(x ) Z )(x * xt) + Z ( Z (x y) }

k,t=l k=l

is also upper semicontinuous on

(henceforth ) is bounded from below and
(x)

_
q (Ix I), there exists a constant C inde-

pendent of n such that h(x)

_
C1. Let Hn(x)

-h (x)
e if x On, and Hn (x) 0 otherwise. Note
that Hn is lower semicontinuous and bounded.
Hence the bilinear form (gn, C (r)) given by

n(f, g) L,D[f, g]Hn(x)dx.

L2
is closable on (r, Hn(x)dx) (see Lemma 3.2
in [7] for proof). This implies (n, C0 (r)) is
closable on ( because,

(2.3) Hn -mr,o -CHn on On for some con-

stant C.
Here we used

_
for the firs inequality, and

suPo. m, ( c and info. Hn ) 0 for the second.

Let
g) _] D[f, g]n(0t mr,o(x )dx.

Then by (2.3)
gn(f f) <- sn(f f) <- Czgn(f f).

LSo (en, C0 ()) is also closable on (, m,odx).
Moreover, the increasing limit of {(sn, C0 ())}
nN is .(Sr,o, C: (ir) ) Hence r,o, Co (r)) is also

closable on (r, mr,odx).

Proof of Theorem 1.1. Lemma 2.1 corres-

ponds to Proposition 4.1 in [7]. So the rest of the
proof is exactly same as the proof of Theorem 4
in [71.
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