Interacting Brownian motions with measurable potentials

By Hirofumi OSADA

Graduate School of Mathematical Sciences, The University of Tokyo (Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1998)

1. Introduction. We construct (unlabeled) interacting Brownian motions, so-called infinite dimensional Wiener processes with interaction, by using Dirichlet form theory.

(Labeled) interacting Brownian motions are infinitely dimensional diffusion processes with state space $(\mathbf{R}^d)^N$ given by the following SDE;

(1.1)
$$dX_t^i = dB_t^i - \sum_{j=1, j \neq i}^{\infty} \frac{1}{2} \nabla \Phi(X_t^i - X_t^j) dt$$

(1 \le i < \infty)

where B_t^i are independent Brownian motion on \mathbf{R}^d . When $\boldsymbol{\Phi} \in C_0^3(\mathbf{R}^d)$, this equation was solved by Lang [3], [4]. (see [1], [5], [8], [11], [12] for further development). The Θ -valued diffusion process associated with (1.1) (unlabeled interacting Brownian motion) is

$$E_t = \sum_{i=1}^{\infty} \delta_{X_t^i} (\delta_a \text{ is the delta measure at } a).$$

Diffusion processes $\{P_{\theta}\}_{\theta \in \Theta}$ obtained in Corollary 1.3 below is corresponds to Ξ_t . We refer to Theorem 3 in [7] with Remark (3,4) after that for the precise meaning of *correspondence* and related open problems.

We assume interacting potential $\boldsymbol{\Phi}$ is super stable and lower regular in the sense of Ruelle, and there exists a upper semicontinuous function $\boldsymbol{\tilde{\Phi}}$ that are regular in the sense of Ruelle and dominates $\boldsymbol{\Phi}$ from above. We remark $\boldsymbol{\Phi}$ itself is not necessarily upper semicontinuous; $\boldsymbol{\Phi}$ needs no regularity more than measurability. We henceforth generalize results in [7] and [13].

Let Θ be the set of all locally finite configurations on \mathbf{R}^{d} . Here a configuration θ is a Radon measure of the form $\theta = \sum_{i} \delta_{xi}$, where $\{x^{i}\}$ is a finite or infinite sequence in \mathbf{R}^{d} with no cluster points. We endow Θ with the vague topology; Θ is a Polish space with this topology.

Let $\boldsymbol{\Phi}: \mathbf{R}^d \to \mathbf{R} \cup \{\infty\}$ be a measurable function such that $\boldsymbol{\Phi}(x) = \boldsymbol{\Phi}(-x)$. We assume: $(\boldsymbol{\Phi}.1) \ \boldsymbol{\Phi}$ is super stable in the sense of Ruelle. (see [9] and [10]).

 $(\Phi.2)$ Φ is lower regular in the sense of Ruelle;

there exist a positive, decreasing function $\varphi : \mathbf{R}^+ \rightarrow \mathbf{R}^+$ satisfying

$$\int_{R^+} \varphi(t) t^{d-1} dt < \infty,$$

$$\Phi(x) \ge -\varphi(|x|) \text{ for all } x \in \mathbf{R}^d.$$

 $(\Phi.3)$ There exists a upper semicontinuous function $\tilde{\Phi}: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ and a constant $\mathbb{R} > 0$ such that

$$\begin{split} \varPhi(x) &\leq \tilde{\varPhi}(x) \text{ for all } x \in \mathbb{R}^d, \\ \tilde{\varPhi}(x) &\leq \varphi(|x|) \text{ for all } |x| \geq R, \\ \tilde{\varPhi}(x) &= \infty \text{ if and only if } \varPhi(x) = \infty. \end{split}$$
Here φ is same as $(\varPhi(2))$.

We remark by $(\Phi.1) \Phi$ is bounded from below. By $(\Phi.1) - (\Phi.3)$ for each z > 0 there exist (grand canonical) Gibbs measures μ with pair potential Φ and activity z ([10]). The definition of Gibbs measure will be given in Section 2.

We consider a symmetric bilinear form $\mathscr E$ on \varTheta ;

 $\mathscr{E}(f, g) = \int_{g} D[f, g] d\mu.$ Here D[f, g] is given by

$$D[f, g](\theta) = \frac{1}{2} \sum_{i} \nabla_{i} \hat{f}(x) \cdot \nabla_{i} \hat{g}(x).$$

Here $\nabla_i = (\frac{\partial}{\partial_{x_{ik}}})_{1 \le k \le d}$, and \cdot means the inner product on \mathbf{R}^d . \hat{f} and \hat{g} in the right hand side are permutation invariant functions given by $f(\theta) =$ $\hat{f}(x)$ and $g(\theta) = \hat{g}(x)$, where $x = (x^i)$ is such that $\theta = \sum_i \delta_{x^i}$. Bilinear map D[f, g] is defined on $\mathcal{D}_{\infty}^{loc}$, the space of local, smooth functions on Θ , defined in Section 2. Let

 $\mathcal{D} = \{f \in \mathcal{D}_{\infty}^{loc.}; \&(f, f) < \infty, \|f\|_{L^{2}(\Theta, \mu)} < \infty\}.$ The purpose of this paper is to prove $(\&, \mathcal{D})$ is closable on $L^{2}(\Theta, \mu)$.

Theorem. 1.1. Assume $(\Phi.1) - (\Phi.3)$. Let μ be a Gibbs measure with potential Φ . Then $(\mathcal{E}, \mathcal{D}_{\infty})$ is closable on $L^{2}(\Theta, \mu)$.

Remark 1.1. In the previous work [7] we proved this result under more restrictive assumptions (Φ .1), (Φ .2) and (Φ .3'), (Φ .4') below: (Φ .3') Φ is tempered in the sense of Ruelle; there exist a decreasing function $\varphi : \mathbf{R}^+ \to \mathbf{R}^+$ and a constant \mathbf{R}_1 such that

 $\int_{\mathbb{R}^{+}} \varphi(t) t^{d-1} dt < \infty,$ $\Phi(x) \le \varphi(|x|) \text{ for all } |x| \ge R_{1}.$

 $(\varPhi.4') \ \varPhi$ is upper semicontinuous on $\{x; \varPhi(x) < \infty\}$, and $\{x; \varPhi(x) = \infty\} = \phi$ or $\{x; \varPhi(x) = \infty\} = \{|x| \le R_2\}$ for some R_2 .

We see $(\Phi.3')$ and $(\Phi.4')$ are stronger than $(\Phi.3)$. Indeed, we can construct $\hat{\Phi}$ as follows; $\hat{\Phi}(x) = \max\{\Phi(x), \hat{\varphi}(|x|)\}$. Here $\hat{\varphi}$ is the left continuous version of φ .

Remark 1.2. For the existence of Gibbs measures $(\Phi.1)$, $(\Phi.2)$, and $(\Phi.3'')$,

 $(\varPhi.3'') \quad \int_{\mathbf{R}^d} |1-e^{-\varPhi(x)}| dx < \infty.$

are enough. It, however, seems difficult to replace $(\varPhi.3)$ by $(\varPhi.3'')$. For even if the number of particle is finite, we need a certain assumption on density of reference measures.

Let $(\mathscr{E}, \mathscr{D})$ denote the closure obtained by Theorem 1.1. Let $\Theta_r^i = \{\theta \in \Theta; \theta (\mathscr{Q}_r) = i\}$, where $\mathscr{Q}_r = \{|x| \leq r\}$. Let σ_r^i denote density functions of μ given by (2.2). In order to prove the quasi regularity of $(\mathscr{E}, \mathscr{D})$ we need

 $(\mu, 1) \sum_{i=1}^{\infty} i\mu(\Theta_r^i) < \infty \text{ for all } r \in N,$

(μ .2) σ_r^i are bounded for all $i, r \in N$.

Combining Theorem 1.1 with Theorem 1 in [7] we obtain:

Corollary 1.2. In addition to the assumptions in Theorem 1.1, assume $(\mu.1)$ and $(\mu.2)$. Then (\mathcal{E} , \mathcal{D}) is a quasi regular Dirichlet form on $L^2(\Theta, \mu)$.

Combining this with results in [6] or ch. 7 in [2] we obtain:

Corollary 1.3. Assume the same assumptions in Theorem 1.2. Then there exists a diffusion $\{P_{\theta}\}_{\theta\in\Theta}$ associated with $(\mathcal{E}, \mathcal{D})$ on $L^{2}(\Theta, \mu)$. Moreover $\{P_{\theta}\}_{\theta\in\Theta}$ is reversible with invariant measure μ .

2. Proof of Theorem 1.1. A function f on Θ is called local if \hat{f} is $\sigma[\pi_r]$ -measurable for some $r \in N$. Here $\pi_r \colon \Theta \to \Theta$ is such that $\pi_r(\theta) = \theta (\cdot \cap \{|x| \le r\})$. We say f is smooth if \hat{f} is smooth, where \hat{f} is a permutation invariant function such that $f(\theta) = f(x)$. $(x = (x^i)$ is such that $\theta = \sum_i \delta_{x^i}$. Let $\mathcal{D}_{\infty}^{loc}$ denote the set of all loc-

al, smooth functions on Θ . Let \mathcal{Q}_r^i denote *i*-product of $\mathcal{Q}_r = \{|x| \leq r\}$.

Fo

$$r x = (x^{k}) \in \mathcal{Q}_{r}^{i}, \ \theta \in \Theta, \ r \leq s, \text{ let} \\ H_{r,\theta,s}^{i}(x) = \sum_{1 \leq k < \ell \leq i} \Phi(x^{k} - x^{\ell}) + \sum_{\ell \in L(r,s)} \left\{ \sum_{1 \leq k \leq i} \Phi(x^{k} - y^{\ell}) \right\},$$

where $(y^{\ell})_{\ell}$ is such that $\theta = \sum_{\ell} \delta_{y^{\ell}}$ and $L(r, s) = \{\ell; r < |y^{\ell}| \le s\}$. We set

(2.1) $H_{r,\theta}^{i}(x) = \lim_{s \to \infty} H_{r,\theta,s}^{i}(x)$, whenever the limit exists.

We remark $H_{r,\theta}^i$ may be infinite. Let $\mathcal{Q}(z) = \mathcal{Q}_1 + z$, where $z \in \mathbf{Z}^d$. Let

$$\Theta_0 = \{ \theta \in \Theta ; \sup_{r \in \mathbb{N}} r^{-d} \sum_{z \in \mathbb{Z}^d, |z| \le r} \theta(\mathcal{Q}(z))^2 < \infty \}.$$

Recall that Φ is bounded from below and $\Phi(x) \ge -\varphi(|x|)$. So it is easy to see that the limit ($\le \infty$) in (2.1) exists for $\theta \in \Theta_0$. For z > 0 let

$$m_{r,\theta}^{i}(x) = Z_{r,\theta}^{-1} \frac{z^{i}}{i!} \exp\left[-H_{r,\theta}^{i}(x)\right],$$
$$Z_{r,\theta} = e^{-|\mathcal{Q}_{r}|} \sum_{i=0}^{\infty} \frac{z^{i}}{i!} \int_{\mathcal{Q}_{r}^{i}} \exp\left[-H_{r,\theta}^{i}(x)\right] dx.$$

Here we set the summand to be 1 for i = 0. Let $M_{r,\theta}$ be the $\sigma[\pi_r]$ -measurable function defined by

$$\begin{split} M_{r,\theta}(\theta_1) &= m_{r,\theta}^i(x) \quad \text{for } \theta_1 \in \Theta_r^i.\\ \text{Here } x &= (x^i) \in \mathcal{Q}_r^i \text{ is such that } \theta_1 = \sum_i \delta_{x^i}. \end{split}$$

Let $\pi_r^c: \Theta \to \Theta$ such that $\pi_r^c(\theta) = \theta \cap (\mathbf{R}^d - \mathcal{Q}_r)$ and let Λ_r denote the Poison random measure with intensity $1_{\mathcal{Q}_r} dx$.

Definition 2.1. A probability measure μ on $(\Theta, \mathcal{B}(\Theta))$ is called a (grand canonical) Gibbs measure with potential Φ and activity z if μ satisfies the following:

 $(G.1) \mu(\Theta_0) = 1$ (tempered),

(G.2) $\mu(A | \sigma[\pi_r^c])(\theta) = \int_A M_{r,\theta}(\theta_1) d\Lambda_r(\theta_1)$ for $A \in \sigma[\pi_r].$

For μ we define density functions as follows.

(2.2)
$$\sigma_r^i(x) = i! \int_{\Theta} m_{r,\theta}^i(x) d\mu.$$

For $f: \Theta \to \mathbf{R}$ let $f_{r,\theta}^i(x) : \Theta \times \mathcal{Q}_r^i \to \mathbf{R}$ denote the function satisfying the following;

(1) $f_{r,\theta}^{i}(x)$ is a permutation invariant function on \mathcal{Q}_{r}^{i} for each $\theta \in \Theta$.

(2)
$$f_{r,\theta(1)}^{i}(x) = f_{r,\theta(2)}^{i}(x)$$
 if $\pi_{r}^{c}(\theta(1)) = \pi_{r}^{c}(\theta(2))$.
 $\theta(1) \quad \theta(2) \in \Theta^{i}$

(3)
$$f_{r,\theta}^{i}(x) = f(\theta)$$
 for $\theta \in \Theta_{r}^{i}$, $(x = (x^{i})$ is such that $\pi_{r}(\theta) = \sum_{i} \delta_{x^{i}}$.

(4)
$$f_{r,\theta}^{*}(x) = 0$$
 for $\theta \notin \Theta_{r}^{*}$.
For a.e. θ , let $\varepsilon_{r,\theta}^{i}$ denote the bilinear

 $C_b^{\infty}(\mathcal{Q}_r^i) \text{ given by } \\ \varepsilon_{r,\theta}^i(f, g) = \int_{\mathcal{Q}_r^i} D[f, g](x) m_{r,\theta}^i(x) dx.$

form on

Lemma 2.1. For a.e. θ ($\varepsilon_{r,\theta}^{i}$, $C_{b}^{\infty}(\mathcal{Q}_{r}^{i})$) is closable on $L^{2}(\mathcal{Q}_{r}^{i}, m_{r,\theta}^{i}dx)$.

No. 1]

 $O_n = \{x = (x^k) \in \mathcal{Q}_r^i;$

dist.
$$(x^k, \Gamma_n(y^j)) > 0$$
 for all k, j ,
dist. $(x^k, \Gamma_n(x^j)) > 0$ for all $k \neq \ell$

Here $\{y^{i}\}$ is such that $\pi_{r}^{c}(\theta) = \sum_{j} \delta_{y^{j}}$. Then since $\tilde{\Phi}$ is bounded on $\mathbf{R}^{d} \setminus \Gamma_{n}, |\hat{\Phi}(x)| \leq \varphi(|x|)$ for $|x| \geq R$ and $\theta \in \Theta_{0}$, we see

$$\sum_{j} \sup \left\{ \sum_{k=1}^{i} \left| \hat{\varPhi}(x^{k} - y^{j}) \right| ; x = (x^{k}) \in O_{n} \right\} < \infty.$$

Hence by Lebesgue's convergence theorem

 $\sum_{j} \{\sum_{k=1}^{i} \hat{\Phi} (x^{k} - y^{j})\} \text{ is upper semicontinuous}$ on O_{n} . So $h(x) := \sum_{i} \hat{\Phi} (x^{k} - x^{\ell}) + \sum_{i} \{\sum_{j=1}^{i} \hat{\Phi} (x^{k} - y^{j})\}$

$$h(x) := \sum_{k,\ell=1}^{\infty} \varphi(x^n - x^\ell) + \sum_{j \in k=1}^{\infty} \varphi(x^n - y^j)$$

is also upper semicontinuous on O_n . Since \mathcal{Q}

(henceforth $\tilde{\Phi}$) is bounded from below and $\Phi(x) \ge -\varphi(|x|)$, there exists a constant C_1 independent of n such that $h(x) \ge C_1$. Let $H_n(x) = e^{-h(x)}$ if $x \in O_n$, and $H_n(x) = 0$ otherwise. Note that H_n is lower semicontinuous and bounded. Hence the bilinear form $(\tilde{\varepsilon}_n, C_b^{\infty}(\mathcal{Q}_r^i))$ given by

$$\tilde{\varepsilon}_n(f, g) = \int_{\mathcal{Q}_r^i} D[f, g] H_n(x) dx$$

is closable on $L^2(\mathcal{Q}_r^i, H_n(x)dx)$ (see Lemma 3.2 in [7] for proof). This implies $(\tilde{\varepsilon}_n, C_b^{\infty}(\mathcal{Q}_r^i))$ is closable on $L^2(\mathcal{Q}_r^i, m_{r,\theta}^i dx)$ because

(2.3) $H_n \leq m_{r,\theta}^i \leq C_2 H_n$ on O_n for some constant C_2 .

Here we used $\Phi \leq \tilde{\Phi}$ for the first inequality, and $\sup_{O_n} m_{r,\theta}^i < \infty$ and $\inf_{O_n} H_n > 0$ for the second.

Let

$$\varepsilon_n(f, g) = \int_{O_n} D[f, g] m_{r,\theta}^i(x) dx.$$

Then by (2.3)
 $\tilde{\varepsilon}_n(f, f) \le \varepsilon_n(f, f) \le C_2 \tilde{\varepsilon}_n(f, f).$

So $(\varepsilon_n, C_b^{\infty}(\mathcal{Q}_r^i))$ is also closable on $L^2(\mathcal{Q}_r^i, m_{r,\theta}^i dx)$. Moreover, the increasing limit of $\{(\varepsilon_n, C_b^{\infty}(\mathcal{Q}_r^i))\}$ $_{n \in \mathbb{N}}$ is $(\varepsilon_{r,\theta}^i, C_b^{\infty}(\mathcal{Q}_r^i))$. Hence $(\varepsilon_{r,\theta}^i, C_b^{\infty}(\mathcal{Q}_r^i))$ is also closable on $L^2(\mathcal{Q}_r^i, m_{r,\theta}^i dx)$. **Proof of Theorem 1.1.** Lemma 2.1 corresponds to Proposition 4.1 in [7]. So the rest of the proof is exactly same as the proof of Theorem 4 in [7]. \Box

References

- J. Fritz: Gradient dynamics of infinite point systems. Ann. Prob., 15, 478-514 (1987).
- [2] M. Fukushima, Y. Oshima, and M. Takeda: Dirichlet forms and symmetric Markov process. Walter de Gruyter (1994).
- [3] R. Lang: Unendlich-dimensionale Wienerprocesse mit Wechselwirkung I. Z. Wahrschverw. Gebiete, 38, 55-72 (1977).
- [4] R. Lang: Unendlich-dimensionale Wienerprocesse mit Wechselwirkung II. Z. Wahrschverw. Gebiete, 39, 277-299 (1978).
- [5] G. Lippner: First order stochastic dynamics of one-dimensional infinite point systems. Point Processes and Queueing Problems, North-Holland, Amsterdam, pp. 277-289 (1981).
- [6] Z. Ma and M. Röckner: Introduction to the theory of (non-symmetric) Dirichlet forms. Springer (1992).
- [7] H. Osada: Dirichlet form approach to infinitedimensional Wiener processes with singular interactions. Commun. Math. Phys., 176, 117-131 (1996).
- [8] H. Rost: Non-equilibrium solution of an infinite system of stochastic differential equations. Lecture Notes on Control and Information Sciences, 25, Springer-Verlag, 297-302 (1980).
- [9] D. Ruelle: Statistical Mechanics. Rigorous Results. Benjamin, New York (1969).
- [10] D. Ruelle: Superstable interactions in classical statistical mechanics. Commun. Math. Phys., 18 127-159 (1970).
- T. Shiga: A remark on infinite-dimensional Wiener processes with interactions. Z. Wahrschverw. Gebiete, 47, 299-304 (1979).
- T. Tanemura: A system of infinitely many mutually reflecting Brownian balls in R^d. Probab. Theory Relat. Fields, 104, 399-426 (1996).
- [13] M. Yoshida: Construction of infinite dimensional interacting diffusion processes through Dirichlet forms. Probab. Theory Relat. Fields, 106, 265– 297 (1996).