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Limiting Profiles of Blow-up Solutions of the Nonlinear Schrbdinger
Equation with Critical Power Nonlinearity

By Hayato NAWA*)
Courant Institute of Mathematical Sciences, New York University, U. S. A.

(Communicated by Kiyosi IT6, M. J. A. Dec. 12, 1997)

1. Introduction and results. This paper
concerns the following Cauchy problem for the
nonlinear Schr6dinger equation (NSC)"

.0u
(NSC) 2z-- + Au + lu[4/Nu O, (t, X) R+ x RN,
IV u(O, x) Uo(X), x e RN.

Here /-- 1, and A is the Laplace operator on

Rg"
The author reviews his recent results on the

asymptotic behavior of blow-up solutions of
(NSC)-( IV ) investigated in the series of papers
[9], [10], and [ll](see also [6], [7], and [8]). So, the
references of this paper are not intended to be
complete. For further references, see those cited
in [9], [10], and [11].

We summarize here the basic properties of
this Cauchy problem (NSC)-(IV)(see, e.g.,[3]).
The unique local existence of solutions is well
known’for any uo H (Rg), there exists a uni-
que solution u(t, x) in C([0, Tm) HI(RN)) for
some Tm (0, oo], (maximal existence time’ for
simplicity, we shall consider the forward problem
only), and u(t) satisfies the following three con-
servation laws of L2, the energy E and the
momentum P (1- 1, 2,..., N) in this order"
(1.1) (t) II,
(1.2) E(u(t)) =-IlVu(t)II=-Lllu(t)ll; E(uo),

f.(1.3) P(u(t)) u(t, x)-f u(t, x)dx

P(uo), 1= 1,2,...,N,
4

for t [0, Tin), where a 2 + , I1.11 and II.
denote the L norm and the L norm respectively.
If, in addition, Ixluo L (RN), then the solution
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u(t) also enjoys Ixlu<) C<[O, Tm) L2(RN)),
and satisfies the following virial identity (see,
e.g., [12] and [15])"
(1.4) Ix alu(t)ll Ix alu011

+ 2t(Uo, (x-- a). VUo) + tE(uo),
where we have used the notation" (f, g) fnn
f(x) g(x)dx. Furthermore we have the following
alternatives" Tm oo or Tm < oo and limt_rm
v u(t)ll oo (blow-up).

If we replace the nonlinear term by lulP-lu,
4

it is known that the exponent p N
in dimension N is the critical value for the none-
xistence of global solutions (see, e.g.,[21 and [151)"
If p < Pc, every solution exists globally in time"
If p

_
Pc, there is a class of initial data leading

to blow-up solutions.
In the previous papers [61, [71, and [81 (see

also [9] and [1 1]), we studied the asymptotic pro-
files of general blow-up solutions to (NSC) and
obtained the following theorem.

Theorem A. Let u (t) be a singular solution

of (NSC)-(IV) such that
(A. 1) limsup V u (t) limsup u (t) I1o oo

t- Tm tT

for some Tm (0, oo]. Let (tn} be any sequence
such that, as n oo,
(A.2) t, T Tin, sup Ilu(t)L-

t [0,tn)
For this {t}, we put

1
(A.3) l,

and, we consider the scaled functions
N

(A.4) Un(t, X) 2 u(tn 2t, nx)

for t (-- (T,- tn)/22n, tn// 2]. Then there ex-
ists a subsequence of {un} (still denoted by {un} ),
which satisfies the following properties" there exist

i a finite number of nontrivial solutions
Lu u u of (NSC) in the space Co(R+; H

(RN)) with
E(u 0 and ;fRu V u (t, x)u (t, x)dx- 0
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for j- 1, 2,..., L, and (ii) sequences {Tn}, {Tn},
k(,) in R with lim T 1 oo (j =/: k),

such that, for any T > O,

(1.5) lim sup ,.(t, ") 2(t, 7") 0,
n--,oo t [0,TI i=1 a

(A.6) lim sup ,. (t, .) V (t, 7",.
noo t [0, T] j=l

(A.7)

=0,

lim sup u,(t, ")- Eu(t, ) o,(t, .)
n- t [0,T] j=l

where

(A.8) [2--- + Aqn 0, (t, x) R+ R,
(o, x) u(o, x) E u(o, x- r),

xR.
Furthermore we have

L

(A.9) Iluoll Ilu(t)]l LIIQII,
j=l

where Qo is a nontrivial solution of

(A.10) Q- Q + IQIQ 0
such that
(. 1)

vo

inf
vH(RN)
vO

Remark 1.1. (1) The solution Q of (A.10)
and (A.1 1) is called the ground state, since it is a
solution of the second minimization problem in

(A.11). Q(x)exp(i) is an example of zero-
energy, zero-momentum, H-bounded, global-in-
time solution. For these facts, see, e.g., [8] and
[151.
(2) If the initial datum uo is radially symmetric,
then so is the corresponding solution, and we
have, in this case, the above theorems with L
1 and Tn 0. That is, the origin is always a
"blow-up point", i.e., L concentration point, for
radially symmetric blow-up solutions.

By the proof of this theorem [8], we can
show (see, e.g., [10] and [11])"

Corollary B. Under the same assumptions, de-

finitions and notations of Theorem A, we have"

lim sup .(t. ") N ..(t, ") .(t, ")
n t[tn-T,tn

=0
with

(B.2) lim 2 sup . (t) I1: o,
rt--*oo t[O,T]

(B.3) un(t,x) ]N/2 - 2n

(B.4) q(t x)= ln(p (t,__. ..x)
Furthermore we have, for any T

C(RN) L(R),
(B.5) lim sup IfR ( ]u(t x)]2

n-..oo t [tn-nT,tn N

Elu.(t, x)[ -I.(t, x) f(x)dx O.
j=l

Theorem A tells us that the blow-up solu-
tions of (NSC) behaves like a finite super posi-
tion of dilated zero-energy, zero-momentum,
HI-bounded, global-in-time solutions accompa-
nied by a dilated wave of the free Schr6dinger
equation. And finally, it loses its L continuity at
the blow-up time because of the concentration of
its L mass which amounts to [IQgll at least. In
addition, the formula (B. 5) suggests that we
might have:
(1.5) lu(s, x)Idx X Ilu (o) [1(dx) / a(dx)

in the weak topology of measures, i.e., weakly* in
!8’, for some suitable sequence (sn} such that s
--* Tm as n-- c, provided that the following
limits exist’ a --= lim_... 7"n (in RN) and p(dx)

limn_ I(tn, x)ldx. It can be considered that
each u carries one singularity in the blow-up
solution.

Fortunately, we can prove that the formula
(1.5) is mathematically true under some conditions"

Theorem C. Suppose one of the following con-
ditions"

(a) N 1 and

( fRUo(X) Uo (X) dx)
E(uo) <

(b) N- 2, E(uo) < 0 and uo is radially sym-
metric;

(c) N

_
1, Ixluo L(RN) and Tm < oo.

Suppose that uo gives rise to a blow-up solution. Let
{tn} be a time sequence as in (A.2) of Theorem A.
For any T > O, we put
(C.1) s,= t,-- T, T> 0.
Note that sn --* Tm as n--* oo. Then there exists a
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subsequence of {sn} (still denoted by the same letter)
which satisfies the following properties" there is a fi-
nite number L N, a family of points {a 2

a} RN
and a positive measure Iz " (the dual

of ) such that we have (1.5) as n-- co in the
sense of measures. In case of uo being radially sym-
metric, (1.5) should read with L 1 and a O.
We note that L

<c.2) Iluoll Xllu <o)il + p(RN).
j---1

Remark 1.2. (1) As we will see in Theorem
D below, under the assumption of (a) or (b), the
corresponding solution blows up in a finite time
(see [9], [11], [13], and [14]). In the case of (c), if
we assume, for example, E(uo) < 0, then the cor-
responding solution blows up in a finite time (see
[2] and [15]).
(2) We can reduce the condition made on the
energy in (a) to E(uo) < 0 by the Galilei trans-
formations as in [9], [10], and [11].

We treat (NSC)-(IV) in the pure energy
space H (RN) in this paper, so that we shall
consider the case (a) and (b) in what follows.

The key ingredient to prove the formula
(1.5) is the following theorem ([9] and [11]).

Theorem D. We suppose one of the conditions
(a) and (b) of Theorem C. Then, we have
(D. 1) T < o and lim u<t) .

t--* T

Furthermore, we have" (i) there exists a constant m.
> 0 for which we have that, for any m (0, m.),
there exists a constant R, > 0 such that

(D.2) I luo<x)l dx < m
’lx

( lu(t, x)ldx < m t (0, T);
lx

and (ii) we have, for sufficiently large R > O,

(D.3) (T 0 u(t, x)ldx dt < ,
I>R

(D.4) (Tm O lu(t, x)] dt < .
I>R

Remark 1.3. (1) The nonexistence part of
global-in-time solutions was already proved in
Ogawa-Y. Tsutsumi [13] and [14]. The novelty
here is the estimates (D.2) and (D.3)-(D.4). In the
papers [9] and [11], in order to prove the none-
xistence of global-in-time solutions, we introduce
a variational problem seeking a non-zero mini-
mum of L-norm under the constraint of negative
"local energy" on (NSC). The coostant m. is de-

termined by the variational value. We shall give

the definition of it in Sect. 2 of this paper (see
(2.8) and (2.9)).
(2) Suppose the condition (b) of Theorem C. Then
we have from (D.3)-(D.4) with the help of the ra-
dial interpolation inequality (see [10] and [11])
that
(1.6) liminf(Tm- t)/llu(t)llL(lxl > R) O.

It is worth while noting here that the following
lower estimate of the blow-up rate (see
Cazenave-Weissler [1])" we have, for some con-
stant C > 0,

C
(1.7) T t - Ilu <t)ll ,
Comparing (1.6) and (1.7), we can safely say that
the "shoulder" decouples the singularity.

(3) For the general Uo H(RN) with E(uo)
< 0, we can show suPte[O, rm u(t)II- i.e.,

the corresponding solution u(t) blows up in a fi-
nite time or grows up at infinity (see [6], [7], [9],
and [11]).

From (D.2). we see that the family of "prob-
ability measures" (lu(t, x )12dx}to is tight.
Hence, using (B.5), we can show (1.5) along the
sequence {sn} defined by (C. 1).

Now recall the examples of "explicit" blow-
up solutions of (NSC) in [5] and [16]. These ex-
amples correspond to (B.1) with q5n 0.
In order words, (1.5) with 0. However, some

numerical analyses suggest that, in general, the
blow-up solution consists of singularities and
non-singular part called "shoulder" or "slope"
(see, e.g., McLaughlin et al. [4]).

Therefore it is an interesting question that
we ask whether each blow-up solution produces
a nontrivial measure f2 ’ in the formula (1.5)
or not. For this question, we have ([10] and [11])"

Theorem E. Suppose the condition (a) or (b)
of Theorem C. Let [2 fS" be the positive measure

found in Theorem C. Then we have"

fnglx[p(dx) < oo Ixluo L(RN).(E. 1)

In other words, we have"

Ixluo L2(R) fnnlxltz(dx) o.(E. 2)

Therefore, we can safely say that, under the
conditions (a) or (b) of Theorem C, if Ixluo does
not belong to L(Rg), then the corresponding
blow-up solution must be accompanied by the
"shoulder", q5n, whose square of absolute value
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converges to a positive measure p ’ (in the
sense of measures) which satisfies fRg IX[2/ (dx)

c. So, there is no quantization effect observed
in blow-up solutions.

In the proof of this theorem ([10] and [11]),
we shall use (D.3) and (D.4), and the proof is
closely related to the argument performed in
Nawa-M. Tsutsumi [12].

2. Basic idea of proof of Theorem D. We
assume that N 1 or N_ 2 and uo is radially
symmetric. We suppose that E* E(uo) < O,
and suppose that the corresponding solution of
(NSC) exists globally in time. We note here that,
if the initial datum Uo(X)is radially symmetric,
so is the corresponding solution u (t, x) of (NSC)
-(IV) with respect to x R

g
for any t [0, Tin).

We introduce a Wa’ (R)odd function, fol-
lowing Ogawa-Y. Tsutsumi [13] and [14]", 0_ <1, 1- (-1) 1 <<1+-(2.1) () 1 yo

smooth, (’_0) 1+_<2,
0, 2_.

We r--= Ixl
__
x for x (x,..., x).

This convention will be also applied to one
dimensional case. Using () defined in (2.1), we

define, for R > 0,
x

(2.2) R(x) = -R(r) Re(),

(2.3) q(x) 2 (s)ds.
One of our key ingredients in the proof is the fol-
lowing generalization of virial identity (1.4)’

Lemma 2.1. We have for t [0, T,),
(2.4) (q, lu(t)l)

= (q, lUol / 2t(Uo, " I7 Uo

fo fostE * 2 ds dye (u (v))

fos2 ds dv (A ( [7. R), {U(V)

=I +H+m.
Here the functional E

R
is defined by"

E() .(P (r) (z)(2.5)
where
(2.6) pl(r) 1- ’(r),

(2.7) p(r) =-- N- ’(r) --(r)
1

We note that we have pe -pl if N 1.

For the proof of this Proposition, see
Ogawa-Y. Tsutsumi [13] and [14](see also [9] and
[11]).

The third term (III) in (2.4) can be easily
handled to be absorbed in the term E*t of (I),
if we choose R > 0 sufficiently large. Hence, if
we manage to overcome the second term (II) to be
absorbed in --E*t of (I) as well, the right hand
side of (2.4) will be dominated by a quadratic
form of t whose top term has a negative coeffi-
cient, so that we are led to a contradiction.

In [9] and [11], in order to handle the second
term (II) in (2.4), we introduce the following
variational value’

(2.8) m -= inf Iv<x)ldx E(v) < --E

where" Z H(Rg
the space of all radially

symmetric functions in H (RN) if N 2; Z
H(R) if N 1, we can obtain a constant m. >
0 independent of R > 0 large enough such that
we have
(2.9) m m.
for sufficiently large R > 0.

Then we can show, by contradiction, through
the generalized virial identity (2.4), that

From this, we thus obtain by the definition of m.
that 1

.E* E(u(t)) for t 0.(2.1) 4
Consequently, taking R > 0 sufficiently large, we
have from (2.4)that, for t 0,

1+ 23 (Uo, g V Uo> t gt E*,

which leads us to a contradiction.
We have sketched the proof of the nonexist-

ence of negative-energy global solutions. As in
the same way of proving (2.10), we can show (D.
2).
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