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On Hasse Principle for x" = a

By Takashi ONO™’ and Tomohide TERASOMA * *)

(Communicated by Shokichi IYANAGA, M. J. A, Sept. 12, 1997)

Introduction. Let k£ be a number field, a a
nonzero number in kK and # an integer > 1. By
the Hasse principle for £" =a we mean of
course the following
(0.1) Theorem. The equation x" = a has a solu-
tion x wm k if and only if it has a solution x, in k,
for every place v of k.

In view of the isomorphism
0.2) k*/K" = H'(k, p,), (similarly for k,),
(0.1) is equivalent to the vanishing of the
Shafarevich-Tate group:

(0.3) 1 (k, n,) = Ker {H'(k, 1,,) —
0,H'(k,, 1)} = 0.

Let E = (E, 0) be an elliptic curve over
k" Then we have
(0.4) Aut (E) = 4, n=2,4or6.

From (0.2) and (0.4), it follows that

(0.5) Twist (E/k) = H' (k, Aut (E)) = K™/ k™",
(similarly for ky). Since, up to K -isomorphisms,
elliptic curves are in one-to-one correspondence
with invariants j(E) € k, (0.3) and (0.5) imply
the following Hasse principle for elliptic curves
over k.

(0.6) Corollary to (0.1). Let E, E’ be elliptic
curves over k. Then E = E’ over k if and only if E
= E’ over k, for all v.

(0.7) Comments. Theorem 1 on p. 96 of [1] in-
volving a finite set S of primes in k contains our
(0.1) as a special case. The “S-version” of (0.1)
goes like this. Let S be a finite set of places of k
including all archimedean places but excluding
some prime factor in k of each prime factor of .
Then 2" = a has a solution in k if it has a solu-
tion in k, for every p & S. Although (0.1) is a
special case of the theorem quoted above, we sub-
mit this paper for publication, as our proof is
somehow different from their proof.

1. Proof of (0.1). As is easily seen, we
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have only to prove the theorem for n = 0
being a prime. So we assume that zn = t°
although this is really needed only at the last
stage of the proof. Choose a number b € Kk, the
algebraic closure of k, so that " = a. Let z be a
primitive #'" root of unity. Then K = k (b, zb,

., 2"7'b) = k(z, b) is a Galois extension of k,
as being the splitting field of " — @ € k[x]. For
each ¢ € Gal (K/k), an ordered pair (t, ) €
Z/mZ X Z/nZ is determined so that

oz =12, ob = 2“b.
Setting P
¢lo) = <0 1 ).
one obtains an injective homomorphism
¢ : Gal(K/k) — GL,(Z/nZ).
Call G the image of ¢. If we put
L 3 1 *

B={(, ;) € 6L@nd), N= {(; 1)=8).
then G € B and we have
(1.1) G/G N N < B/N = (Z/nZ)".
By the assumption in (0.1), for each p in k and
each prime o in K lying above p, there is an ¢ so
that 26 € KN k, © Ko. Let Dp be the sub-
group of Gal(K/k), the decomposition group of o,
corresponding to the intermediate field K N k, of
K/k. Consequently,
(1.2) Do stabilizes z'b for some i € Z/nZ.
If, in particular, p is unramified for ‘K/k, then
Frob p, a generator of Dp, stabilizes z'b. Back to
the situation (1.1), we claim that

(1.3) GNN=1.
In fact, let g = <(1) i) be any element of G N
N. It can also be written g = ¢ (o) = (é 1;),

o € Gal(K/k). Comparing two matrices, we have
t=1, u = ¢c. On the other hand, by Chebotarev
theorem, one finds a prime p in K such that o =
Frob p. In view of (1.2), there is an 7 so that z'b
=0(z'b) =2"™b=2""b; hence ¢ =0, and so
g=1

Now let H be the subgroup of Gal (K/k)
corresponding to the field k (z), the cyclotomic
subfield of K. Then, we have, by (1.3),
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1 u

cEH®o0oz=2& ¢ (0)=(0 1

=10=1,

which implies that K = k(z). From now on, we
use our assumption: z# = £°. Since £ is totally
ramified for the #'" cyclotomic extension Q(z)/Q,
a prime p in k which lies above £ is also totally
ramified for the relative cyclotomic field K/k.
Call o the prime in K above p. Then, by (1.2), the
group D, = Gal (K/k) stabilizes z'b for some i;

) € GN N in other words 2'b € k.
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