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1. Introduction. Let f(z2) be meromorphic
and locally univalent in the unit disk D = {z: | z\
< 1}. Then the Schwarzian derivative of f(2) is
defined as

f"@Yy 1 (f )\
S;@) = (f’(z)) _§<f’(z)> :
It is well-known that if f(2) is locally univalent
in D and satisfies

2
|S, (| £ ———— (zeD),
f (1 _ l 2 |2)2
then f(2) is univalent in D. Furthermore, if
2t
(1) 1S, | =——— (ze D)
’ a-1z»?

for some $(0 = ¢ < 1), then f(2) has a quasicon-
formal extension to the plane.
Chuaqui and Osgood [2] have proved that
Theorem A. Let f(2) be analytic in D with
f0)=0,f0) =1, and f7(0) =0. If f(2)
satisfies (1) then
Alzl, =D =|f@|=A(zl,»
and
Az, = =slf@l=A(zl, 0
for ze D, where A’ means the differentiation of A
with respect to 2z, and A(z, £) is defined as

2) A t)=( 1 >(1+z)m—(1-—z)
) Al VI=t Q4+ +a-2""

Using Theorem A, they also proved that

Theorem B. If f(2) which is normalized as
in Theorem A is analytic in D, and satisfies (1),
then f(2) has a Holder continuous extension to
| z| =1 with

v1-t

1) = fe) | S 52—
for all z, and z, in D. The exponent v1 — ¢ is
sharp.

In Theorem B, although the exponent v1 — ¢
is sharp, the Holder constant 47 /v1 — ¢ is not
sharp.
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2. Holder continuous extension. Our first
result on Hélder continuous extension is con-
tained in

Theorem 1. Let f(2) be analytic in D with
) =0, =1, and f7(0) =0. If f(2)
satisfies (1), then f(2) has a Hélder continuous
extension to | z| = 1 with

ey s (et
1f@) —f@) | = (==
1—yT=F+ 2" yT—1
1—1¢
for all z; and 2z, in | z| £ 1. The exponent y1 — ¢
is sharp.

Proof. According to Chuaqui and Osgood

[2], we have

3 |lff@l=4
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for zeD. Let z; and 2,(2; # 2z,) be arbitrary
points in D and choose p =1 — (1 —2v) |z, —
z,|/2. Then, from (4), we have
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This gives a better result than Theorem B.
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Moreover, noting that

F(r) =

X. HUANG and S. Owa [Vol. 72(A),

40+ PP — »?!

@Q+»22+Qa-
is increasing for 0<r <1,

| f(z) — f(z,) | more precisely. Let t = (1 + 7) /

r) 21))

we estimate

Q—»n,1—2v=k=1—4yY/1—1+¢, and p=
1— k| z — 2,|/2. Then, by (3), we obtain

|f(21) _f(zz) | =

fphf'(z)dzi +

+
w 2
-1z Ot
a+p)/a-p) (1 4+ )
4((1 + p)/1 — )"

=4
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This completes the proof of Theorem 1.

The following example gives a
for the best Holder constant M|,

lower bound

Example 1. Let A(z, #) be the function de-

fined in (2). Then we have
|AGz, » —AQ, )|

lim T
l:'_.<11 |2 —1 | -
2
V Izl<1 a+ z) '+ -
_ 1 1-vit
=A=12

)‘\/Tt_

Thus the best Holder constant M, must satisfy

1-vV1-t
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3. Quasiconformal extension.

Next we con-

sider conformal mappings that can be extended to
quasiconformal mappings. Let A be the class of
functions of the form

f) =z+ i a,z"
n=2

which are analytic in D. It is an interesting prob-
lem to determine whether a function f(2) € A is
univalent in D or not, and if it is, whether
f(2) has a quasiconformal extension on the whole
plane C. There are many works on this topic.
For example, there are Nehari criteria [4], Becker
criteria [1], and so on.
Let f(2) € A, and let g(2) be define by

(2) = @A -z
82 = F+ /0 +x2) —f@
= % + h(z, ).

Then f(2) is univalent in D if and only if g(2) is
univalent in D.

Ozaki and Nunokawa [6] showed that

Theorem C. In order that the function w =
f(2) to be univalent in D, it is sufficient that

|z, )| =1 (zeD)

for some x e D.

Nunokawa, Obradovi¢ and Owa [5] used the
corollary of Theorem C to show that

Theorem D. Suppose that f(2) € A, f(2)/z
#+0 for 0<|z| <1, and | (z/f(2))"| =1 (ze D).
Then f(2) is univalent in D.

Huang [3] further proved that

Theorem E. Let f(2) =2/(1 — a,z+ ¢(2)
=z+ a,2"+ ...¢eA, where $(2) is analytic in
D, $(0) = ¢’(0) = 0, and
| p(z) /2, — $(2,) /2,| £ |2, — 2,] (z,eD, z,e D).
Then f(2) is univalent in D.

As a corollary of Theorem E, Huang [3] also
proved that

Corollary. Suppose that f(2) ¢ A, f(2) /z #
0 for 0<|z|<1 If |G/f@)|=2(zeD),
then f(2) is univalent in D.

The following example shows that the condi-
tion in Theorem E,
| ¢ (2) /2, — ¢(2,) /2,| £ |2, — 2,| (z,eD, z,e D),
is best for f(2) to be univalent.

Example 2. Let f,(2) =2/ — tz°/2),
1<t<2 Since 1<t<2,f(2eA As in
Theorem E, we have

$o(2) = z and sup (¢° Z)) | =¢.

2D
This shows that sup | (¢,(2) /2)" | approaches to
zeD
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1, as t does. However, f,(2) is not univalent in D.

Since
(2, — 2) A — t2,2,(2, + 2,) /2)
fo(2) — folz) = ———= 3 S 3 2
1+ t2,/2)A + t2,/2)
if we set G(r, r) = tryr,(r, + 7,) /2, and let
¥, = 7’12, we obtain )
1+ r)rt
G(r, r,) = F(r) = L_?1_1_

We see that F(0) =0, F(1) =¢t> 1, by the
continuity of F(r), there exists a 7, (0 < 7'
< 1) such that F(»,") = 1. Thus f,(2) is not uni-
valent in D.

Now, we show that Theorem C is equivalent
to Theorem E. If g(2) = (1 + zh(z, x)) /2, then
1/g(2) = z2/Q + zh(z, x)). In this case, ¢(2)
= z(h(z, ) — h(0, x)) and ¢(0) = ¢’(0) = 0.
If |#(z, 2)] =1, then we have | (¢(2)/2)]
= 1. On the other hand, if f(2) = 2/(1 + a,z +
¢(2)) and satisfies the conditions in Theorem E,
then h(z, 0) = a, + ¢(2) /z and | h'(2,0) | = 1.
So Theorem C is equivalent to Theorem E. This
result shows that the condition in Theorem C is
also best for £(2) to be univalent in D.

Considering the quasiconformal extensjon
problem for f(2) =2/ — a,z+ ¢(2)), we
obtain the following explicit result.

Theorem 2. Let f(2) =2/ — a,z + ¢(2)
=z+ a2+ ...cA, where ¢(2) is analytic in
D, $(0) = ¢(0) =0, and

$@) _ ¢ <klz — 2| (2,¢D, z,e D)

2 2,
for some k < 1. Then the mapping F(z) defined
by the formula

V4
1—a,z+ ¢

for |z] =1
F(2) =

z
=
T— a7+ g/ forlzl =1
is a quasiconformal extension of f(2) onto € and

|uF@2) | = | F5/F,| = k.
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Proof. Note that ¢(2) is analytic in D by
the condition for ¢(2). It is easy to show that
F(2) is sense-preserving local homeomorphism in

C’, and because
1

A —a,z+|zI°6(1/2)*

2z

and

L <_z_>2 Zo(1/2) — Z9’(1/2)

fON 1 — gzt 2P /D)
for | z| =2 1, the complex dilatation of F(z) satis-
fies
|uF(2) | = |F/F,|=|2¢'1/2) — #¢Q /2| =k
in C-D. Thus F(2) is a quasiconformal in C. The
proof of Theorem 2 is finished.
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