On $L(1, \chi)$ and Class Number Formula for the Real Quadratic Fields

By Ming-Guang LeU
Department of Mathematics, National Central University, Republic of China (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1996)

1. Introduction. Let k be a positive integer greater than 1 , and let $\chi(n)$ be a real primitive character modulo k. The series

$$
L(1, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}
$$

can be divided into groups of k consecutive terms. Let v be any nonnegative integer, j an integer, $0 \leq j \leq k-1$, and let

$$
T(v, j, \chi)=\sum_{n=j+1}^{j+k} \frac{\chi(v k+n)}{v k+n}=\sum_{n=j+1}^{j+k} \frac{\chi(n)}{v k+n} .
$$

Then $L(1, \chi)=\sum_{n=1}^{j} \frac{\chi(n)}{n}+\sum_{v=0}^{\infty} T(v, j, \chi)$.
We remind the reader that a real primitive character $(\bmod k)$ exists only when either k or $-k$ is a fundamental discriminant, and that the character is then given by

$$
\chi(n)=\left(\frac{d}{n}\right),
$$

where d is k or $-k$, and the symbol is that of Kronecker (see, for example, Ayoub [2] for the definition of a Kronecker character).

In [5], Davenport proved the following theorem:

Theorem (H. Davenport). If $\chi(-1)=1$, then $T(v, 0, \chi)>0$ for all v and k. If $\chi(-1)=$ -1 , then $T(0,0, \chi)>0$ for all k, and $T(v, 0, \chi)$ >0 if $v>v(k):$ but for any integer $r \geq 1$ there exist values of k for which

$$
\begin{gathered}
T(1,0, \chi)<0, T(2,0, \chi)<0, \ldots \\
T(r, 0, \chi)<0
\end{gathered}
$$

In [9], Leu and Li derived the following result about $T\left(v,\left[\frac{k}{2}\right], \chi\right)$.

Theorem A. If $\chi(-1)=1$, then $T\left(v,\left[\frac{k}{2}\right], \chi\right)$ <0 for all v and k, where $[x]$ denotes the greatest integer $\leq x$.

[^0]Combining the results of Davenport [5] and Theorem A of Leu and Li, we have the following interesting inequalities.

Theorem B. If $\chi(-1)=1$, then

$$
\begin{equation*}
\sum_{n=1}^{k} \frac{\chi(n)}{n}<L(1, \chi)<\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} \tag{1.1}
\end{equation*}
$$

In section 2 , we will prove that $T(v, j, \chi)$ $\neq 0$ for prime integer $k>2$, nonnegative integer v and $j=0,1,2, \ldots, k-1$. In section 3 , we will derive the inequalities for $L(1, \chi)$ on even real primitive character modulo k :

$$
\begin{equation*}
\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln k}{\sqrt{k}}<L(1, \chi)<\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} \tag{1.2}
\end{equation*}
$$

On the other hand, using Siegel-Tatuzawa's lower bound for $L(1, \chi)$ (See [15] and [13]) and Louboutin's upper bound for $L(1, \chi)$ (See [10], [3], [14] and [12]), one also has inequalities for $L(1, \chi)$ on even real primitive character modulo k (with one possible exception coming from applying Siegel-Tatuzawa's theorem [15]):

$$
\begin{align*}
\frac{0.655}{4} \frac{1}{k^{1 / 4}}<L(1, \chi) & \leq \frac{1}{2} \ln k \tag{1.3}\\
& +\frac{2+\gamma-\ln (4 \pi)}{2}
\end{align*}
$$

where $k \geq e^{11.2}$ and γ denotes Euler's constant. From the facts $\lim _{k \rightarrow \infty} \frac{\ln k}{\sqrt{k}}=0$ and $\lim _{k \rightarrow \infty}\left(\frac{1}{2} \ln k\right.$ $\left.-\frac{0.655}{4} k^{-\frac{1}{4}}\right)=\infty$, it is clear that the inequalities (1.2) provides much better estimate for $L(1, \chi)$ than the inequalities (1.3) does. In these days, computing facilities are highly developed, the inequalities (1.2) may be used to investigate varied problems related to $L(1, \chi)$. In section 4 , we will derive a class number formula for the real quadratic fields:

> - If positive integer k is not of the form $m^{2}+4(m \in \mathrm{~N})$, then

$$
h=\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]
$$

where h and $\varepsilon>1$ denote the class number and the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{k})$, respectively.

- If $k=m^{2}+4(m \in N$ and $m \geq 3)$, then

$$
h=\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]-i
$$

where $i=0$ or $i=1$ depends on whether $\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]+E(k)$ is an even integer or an odd integer, where $E(k)$ is 1 or 0 depending on whether k is a prime or not a prime.
2. $T(v, j, \chi) \neq 0$. In order to prove the main result of this section, we need the following propositions and lemmas.

Proposition 1. Let a_{i} and b_{i} be any pair of nonzero integers without any common divisors ($i=$ $1,2, \ldots, n)$. If there exists a prime number p and a positive integer α such that $p^{\alpha} \mid b_{l}$ for some integer $l, 1 \leq l \leq n$, and $p^{\alpha} \nless b_{j}$ for any integer $j, 1 \leq j$ $\leq n$ and $j \neq l$, then

$$
\sum_{i=1}^{n} \frac{a_{i}}{b_{i}} \neq 0
$$

Proof. For integers $i=1,2, \ldots, n$, we express, by hypothesis, $b_{i}=p^{\beta i} m_{i}$ with m_{i} an integer without prime factor p and β_{i} an integer satisfying $\alpha>\beta_{i} \geq 0$ for $i \neq l$ and $\beta_{i} \geq \alpha$ for $i=l$. Write $\Pi_{i=1}^{n} b_{i}=p^{t} M$, where $t=\beta_{1}+\cdots$ $+\beta_{n}$ and observe that $M=\Pi_{i=1}^{n} m_{i}$ is an integer without prime factor p. We have

$$
\sum_{i=1}^{n} \frac{a_{i}}{b_{i}}=\frac{\sum_{i=1}^{n} a_{i} p^{t-\beta_{i}} \frac{M}{m_{i}}}{p^{t} M}=: \frac{N}{p^{t} M}
$$

Write the numerator N as a sum of two parts $\sum_{i \neq l} a_{i} p^{t-\beta_{i}} \frac{M}{m_{i}}+a_{l} \frac{M}{m_{i}} p^{t-\beta_{l}}$. Then

$$
\begin{aligned}
\frac{N}{p^{t-\beta_{l}}} & =\sum_{i \neq l} a_{i} p^{\beta_{l}-\beta_{i}} \frac{M}{m_{i}}+a_{l} \frac{M}{m_{l}} \\
& \equiv a_{l} \frac{M}{m_{l}}(\bmod p) \\
& \not \equiv 0(\bmod p)
\end{aligned}
$$

since a_{l} and b_{l} have no common divisors and $\beta_{l}>0$, hence $a_{l} \frac{M}{m_{l}}$ is an integer without prime factor p. This implies that $N \neq 0$, and therefore $\sum_{i=1}^{n} \frac{a_{i}}{b_{i}} \neq 0$.

Lemma 1. If $\binom{n}{m}$ is divisible by a power of a
prime p^{α}, then $p^{\alpha} \leq n$. (The expression $\binom{n}{m}=$ $\frac{n!}{(n-m)!m!}$.

Proof. See, e.g., P. Erdös [6, pp. 283], for a proof.

The following lemma is a result of Hanson [7]:

Lemma 2. The product of m consecutive integers $n(n+1) \ldots(n+m-1)$ greater than m contains a prime divisor greater than $\frac{3}{2} m$ with the exceptions $3 \cdot 4,8 \cdot 9$ and $6 \cdot 7 \cdot 8 \cdot 9 \cdot 10$.

By a simple calculation, we see that $s>\frac{3}{4} m$ for integer $m \geq 4200$, where s is the number of positive integers which are smaller than m and divisible by either 2 or 3 or 5 or 7 . In combination with table of prime numbers <5000, we have the following lemma.

Lemma 3. For integer $m \geq 50, \pi(m) \leq$ $\frac{31}{100} m$, where $\pi(m)$ denotes the number of primes less than or equal to m.

Applying a method of Hanson [7] and Lemma 3, we have

Proposition 2. For integer $m \geq 50$ and integer $n \geq m^{\frac{100}{38}},\binom{n}{m}$ has prime factor greater than $2 m$.

Proof. For $m \geq 50$, by Lemma 3, $\pi(m)$ $\leq \frac{31}{100} m$. Suppose that $\binom{n}{m}$ has no prime factor greater than $2 m$. Lemma 1 implies

$$
\binom{n}{m} \leq n^{\pi(2 m)} \leq n^{\frac{31}{100} 2 m}=n^{\frac{62}{100} m}
$$

However since

$$
\binom{n}{m}=\frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-m+1}{1}>\left(\frac{n}{m}\right)^{m}
$$

we must have

$$
\left(\frac{n}{m}\right)^{m}<n^{\frac{62}{100} m}
$$

which is false if $m \leq n^{\frac{38}{100}}$, and the proposition follows.

For any positive odd integer $m>1$, there exists a unique positive integer α such that $2^{\alpha}<m<2^{\alpha+1}$.

Lemma 4. Let χ be a real primitive character modulo a positive odd prime integer k and α the integer such that $2^{\alpha}<k<2^{\alpha+1}$. For any nonnega-
tive integer v and integer $j, 0 \leq j \leq k-1$, if $(v+1) k$ is not divisible by 2^{α}, then

$$
T(v, j, \chi) \neq 0
$$

Proof. Since $2^{\alpha}<k<2^{\alpha+1}$, there is at least one integer, among k consecutive integers $v k+j$ $+1, \ldots, v k+j+k$, divisible by 2^{α}. Among integers $v k+j+1, \ldots, v k+j+k$, it is also clear that there are at most two integers, say $v k$ $+j+i_{1}$ and $v k+j+i_{2}$, which are divisible by 2^{α}. If $i_{1} \neq i_{2}$, then only one of them, say $v k+j$ $+i_{1}$, is divisible by $2^{\alpha+1}$. By assumption $v k+j$ $+i_{1} \neq(v+1) k$, therefore $\chi\left(v k+j+i_{1}\right) \neq 0$, and by Proposition 1, we have that $T(v, j, \chi) \neq$ 0 . If $i_{1}=i_{2}$, again by assumption and Proposition $1, T(v, j, \chi) \neq 0$.

Now, we are ready to derive Theorem 1:
Theorem 1. Let χ be a real primitive character modulo a positive odd prime integer $k, k \geq 3$ and v a nonnegative integer. Then
$T(v, j, \chi) \neq 0$ for $j=0,1,2, \ldots, k-1$.
Proof. The case $v=0$ has been proved in Proposition 1 of [9]. For $v \neq 0$, we divide the argument into two cases:

Case 1. $k>100$.
By Lemma 4, it is enough to discuss the case $2^{\alpha} \mid(v+1) k$, where α is the integer such that 2^{α} $<k<2^{\alpha+1}$.

For any fixed positive integer v such that 2^{α} $\mid(v+1) k$ and any fixed integer $j(j=0,1,2, \ldots$, $k-1$), by Lemma 2 , there exists a prime p, p $>\frac{3}{2} k$ such that $p \mid\left(v k+j+i_{0}\right)$ for some integer i_{0} in the closed interval $[1, k]$. If $j+i_{0} \neq k$, by Proposition $1, T(v, j, \chi) \neq 0$. If $j+i_{0}=k$, then either $i_{0} \in\left[1,\left[\frac{k}{2}\right]\right]$ or $i_{0} \in\left[\left[\frac{k}{2}\right]+1, k\right]$. If $i_{0} \in\left[\left[\frac{k}{2}\right]+1, k\right]$, by Proposition 2 , there exists a prime $q, q>2\left[\frac{k}{2}\right]$ such that $q \mid(v k+j$ $+i_{1}$) for some integer i_{1} in the closed interval $\left[1,\left[\frac{k}{2}\right]\right]$. (Note. In the case $j+i_{0}=k$, we have that $v k \geq 2^{\alpha} p k-k=k\left(2^{\alpha} p-1\right)>k^{\frac{100}{38}}$ for k >100.) Since $q>k$, we know that $q \nmid(v k+j$ $+i$) for any integer i in $[1, k]$ and $i \neq i_{1}$. By Proposition 1, $T(v, j, \chi) \neq 0$. For the case $i_{0} \in$ $\left[1,\left[\frac{k}{2}\right]\right]$, the similar argument implies that $T(v, j, \chi) \neq 0$.

Case 2. $3 \leq k<100$.
By applying Proposition 1, Lemma 2, Lemma 4 and the results of Lehmer [8], we have that $T(v, j, \chi) \neq 0$ for any positive integer v and integer $j, 0 \leq j \leq k-1$.
3. Estimating $L(1, \chi)$. In this section, we use Abel's identity and Pólya's inequality to derive the inequalities (1.2) and in the next section, as an application, we use inequalities (1.2) to give a class number formula for the real quadratic fields.

We begin by recalling the results of Abel and Pólya.

Lemma 5. For any arithmetical function $a(n)$ let

$$
A(x)=\sum_{n \leq x} a(n)
$$

where $A(x)=0$ if $x<1$. Assume f has a continuous derivative on the interval $[y, x]$, where $0<y<x$. Then

$$
\begin{gathered}
\sum_{y<n \leq x} a(n) f(n)=A(x) f(x)-A(y) f(y) \\
-\int_{y}^{x} A(t) f^{\prime}(t) d t
\end{gathered}
$$

Lemma 6. Let χ be a primitive character modulo integer $k, S=\sum_{n<B} \chi(n)$. Then $|S|<\sqrt{k} \ln k$.
The proofs of Lemma 5 and Lemma 6 can be found in [1, pp. 77] and in [1, pp. 173], respectively. We remark that the integer k in Lemma 6 can be either a prime or a composite integer.

From the definition of Kronecker character we know that $\chi(n)=\chi(-n) \operatorname{sgn}(d)$, where d is the fundamental discriminant equal to k or $-k$ (cf. [2, page 292]). If both k and $-k$ are fundamental discriminants (which happens if and only if $k=8 k^{\prime}$, where k^{\prime} is odd and squarefree) there are two real primitive characters (Kronecker character) $(\bmod k)$, otherwise only one. Clearly, we have that $\chi(-1)=1$ if and only if $d>0$. In this section and the next section we restrict ourselves to the case $d=k$. Fix such an integer k, let χ be a real primitive character attached to the real quadratic field $\boldsymbol{Q}(\sqrt{k})$ with $\chi(-1)=1$.

Let $A(x)=\sum_{n \leq x} \chi(n)$ and $f(x)=\frac{1}{x}$, then, applying the properties $\chi(-1)=1$ and $\sum_{n=1}^{k}$ $\chi(n)=0$, we have $A\left(\frac{k}{2}\right)=A\left(\left[\frac{k}{2}\right]\right)=A(k)=$ 0 . By Theorem B mentioned in section 1 and

Abel's identity (Lemma 5), we easily have the following theorem.

Theorem 2. $\sum_{n=1}^{[r]} \frac{\chi(n)}{n}-\frac{A(r)}{r}+\int_{r}^{k} \frac{A(t)}{t^{2}} d t$ $<L(1, \chi)<\sum_{n=1}^{[r]} \frac{\chi(n)}{n}-\frac{A(r)}{r}+\int_{r}^{\left[\frac{k}{2}\right]} \frac{A(t)}{t^{2}} d t$, where $1 \leq r \leq\left[\frac{k}{2}\right]$.

Remark. It might be possible that there exist integers k and small integer $r=r(k)$ such that $A(t)$ is bounded by small number for t in the interval $\left[r,\left[\frac{k}{2}\right]\right]$ or even better situation may occur for t in the interval $[r, k]$. In those cases, the finite $\operatorname{sum} \sum_{n=1}^{r} \frac{\chi(n)}{n}$ can be used to estimate $L(1, \chi)$.

For the case $r=\frac{k}{2}$, we obtain, as a corollary of Theorem 2, the inequalities (1.2):

Theorem 3. $\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln k}{\sqrt{k}}<L(1, \chi)<$ $\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}$.

Proof. From Theorem B, we have

$$
\begin{gathered}
\quad \sum_{n=1}^{k} \frac{\chi(n)}{n}<L(1, \chi)<\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} . \\
\text { Write } \quad \sum_{n=1}^{k} \frac{\chi(n)}{n}=\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}+\sum_{n=\left[\frac{k}{2}\right]+1}^{k}
\end{gathered}
$$ $\frac{\chi(n)}{n}$. By applying Abel's identity, we have

$$
\begin{aligned}
\sum_{n=\left[\frac{k}{2}\right]+1}^{k} \frac{\chi(n)}{n} & =\frac{A(k)}{k}-\frac{A\left(\frac{k}{2}\right)}{\frac{k}{2}}-\int_{\frac{k}{2}}^{k} A(t) f^{\prime}(t) d t \\
& =\int_{\frac{k}{2}}^{k} \frac{A(t)}{t^{2}} d t
\end{aligned}
$$

where $A(x)=\sum_{n \leq x} \chi(n)$ and $f(x)=\frac{1}{x}$ for $x>$ 0 . Now applying Pólya's inequality, we have

$$
\begin{gathered}
\left|\sum_{n=\left[\frac{k}{2}\right]+1}^{k} \frac{\chi(n)}{n}\right| \leq \int_{\frac{k}{2}}^{k} \frac{|A(t)|}{t^{2}} d t< \\
\sqrt{k} \ln k \int_{\frac{k}{2}}^{k} \frac{1}{t^{2}} d t=\frac{\ln k}{\sqrt{k}}
\end{gathered}
$$

Therefore, we obtain the desired inequalities

$$
\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln k}{\sqrt{k}}<\sum_{n=1}^{k} \frac{\chi(n)}{n}<L(1, \chi)<
$$

$$
\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}
$$

Remark. Applying Theorem 1 of [15], we know that $L(1, \chi)>\frac{1}{40 k^{1 / 4}}$ with one possible exception. Since $\frac{1}{40 k^{1 / 4}}>\frac{\ln k}{\sqrt{k}}$ for large k and $\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}>L(1, \chi), \quad$ it is quite sure that $\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln k}{\sqrt{k}}>0$ for large integer k. As an example, we consider $k=17$, we have that $\sum_{n=1}^{8} \frac{\chi(n)}{n}-\frac{\ln 17}{\sqrt{17}} \approx 0.344987688$ is better than $\frac{1}{40 \sqrt[4]{17}} \approx 0.012311976$.
4. Class number formula. Dirichlet's class number formula asserts that

$$
h=\frac{\sqrt{k}}{2 \ln \varepsilon} L(1, \chi),
$$

where k is the fundamental discriminant, h is the class number, and $\varepsilon(>1)$ is the fundamental unit of $\boldsymbol{Q}(\sqrt{k})$. Before deriving a new class number formula for the real quadratic fields, we recall a well-known result:

Lemma 7. If the discriminant of a quadratic field contains only one prime factor, then the class number of the field is odd.

The proof can be found in [4, pp. 187].
As an application of Theorem 3, we have the following inequalities.

Theorem 4.

$$
\begin{gathered}
\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln k}{2 \ln \varepsilon}<h=\frac{\sqrt{k}}{2 \ln \varepsilon} L(1, \chi) \\
<\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}
\end{gathered}
$$

Corollary 1. If $k \equiv 1$ (mod 4) is a prime, then the class number $h=1$ if and only if $\sum_{n=1}^{\left[\frac{k}{2}\right]}$ $\frac{\chi(n)}{n} \leq \frac{6 \ln \varepsilon}{\sqrt{k}}$.

Proof. By Lemma 7, the class number h is odd. If $\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} \leq 3$, then, by Theorem $4, h=1$. Again, by using Theorem 4, we have

$$
\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}<h+\frac{\ln k}{2 \ln \varepsilon}
$$

If $h=1$, we see that

$$
\begin{aligned}
\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n} & <\frac{2 \ln \varepsilon}{\sqrt{k}}+\frac{\ln k}{\sqrt{k}} \\
& =\frac{2 \ln \varepsilon}{\sqrt{k}}+\frac{2 \ln \frac{\sqrt{k}}{2}}{\sqrt{k}}+\frac{2 \ln 2}{\sqrt{k}} \\
& \leq \frac{2 \ln \varepsilon}{\sqrt{k}}+\frac{2 \ln \varepsilon}{\sqrt{k}}+\frac{2 \ln \varepsilon}{\sqrt{k}}=\frac{6 \ln \varepsilon}{\sqrt{k}}
\end{aligned}
$$

Corollary 2. If positive integer k is not of the form $m^{2}+4(m \in N)$, then

$$
h=\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]
$$

Proof. Let $\varepsilon=\frac{a+b \sqrt{k}}{2}(>1)$ be the fundamental unit of $\boldsymbol{Q}(\sqrt{k})$. From the properties $|\varepsilon \bar{\varepsilon}|=1$ and $\varepsilon>1$, we know $b>0$.

We divide the argument into two cases:
Case 1. $b>1$.
Clearly, $\quad \varepsilon^{2}>k$. Thus $\frac{\ln k}{2 \ln \varepsilon}<1, \quad$ which implies, by Theorem 4,

$$
h=\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]
$$

Case 2. $\quad b=1$.
Since $|\varepsilon \bar{\varepsilon}|=1$ and k, by assumption, is not of the form $m^{2}+4(m \in N)$, we have $a^{2}-k=$ 4. Because $\varepsilon>1$, so $a=\sqrt{k+4}$. We have $\varepsilon=$ $\frac{\sqrt{k+4}+\sqrt{k}}{2}>\sqrt{k}$. Hence $\frac{\ln k}{2 \ln \varepsilon}<1$, which implies

$$
h=\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]
$$

Corollary 3. If $k=m^{2}+4(m \in N$ and m ≥ 3), then

$$
h=\left[\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]-i
$$

where $i=0$ or $i=1$ depends on whether $\left[\frac{\sqrt{k}}{2 \ln \varepsilon}\right.$ $\left.\sum_{n=1}^{\left[\frac{k}{2}\right]} \frac{\chi(n)}{n}\right]+E(k)$ is an even integer or an odd integer, where $E(k)$ is 1 or 0 depending on whether k is a prime or not a prime.

Proof. For simplicity, let $A=\frac{\sqrt{k}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{k}{2}\right]}$ $\frac{\chi(n)}{n}$. Since the fundamental unit $\varepsilon=$
$\frac{m+\sqrt{m^{2}+4}}{2}$, we easily have $\varepsilon^{3}>k$ which gives $\frac{3}{2}>\frac{\ln k}{2 \ln \varepsilon}$. By Theorem $4, A-\frac{3}{2}<A-$ $\frac{\ln k}{2 \ln \varepsilon}<h<A$. Therefore, there are at most two distinct integers contained in the interval $[A-$ $\left.\frac{3}{2}, A\right]$.

We divide the argument into two cases:
Case 1. k is prime.
By Lemma 7, the class number h is odd. Hence $h=[A]-i$, where $i=0$ or 1 depends on the integer $[A]$ is odd or even.

Case 2. k is not a prime.
By the genus theory of quadratic number fields, the class number $h=h^{+}=2^{t-1} h^{*}$ (for the case $\varepsilon \bar{\varepsilon}=-1$), where h^{+}is the class number of $\boldsymbol{Q}(\sqrt{k})$ in the narrow sense, h^{*} is the number of classes in a genus, and t is the number of distinct prime factors of k. The restriction on k gives that the class number h is even. Hence $h=$ [A] $-i$, where $i=0$ or 1 depends on the integer [A] is even or odd.

Combining Theorem 4 and the class number formula of Ono [11], we can get the following interesting inequalities without involving the class number h and the fundamental unit ε.

Corollary 4. Let $p \equiv 1(\bmod 4)$ be a prime. Then

$$
\begin{gathered}
\frac{\sqrt{p}}{2} \sum_{n=1}^{\left[\frac{p}{2}\right]} \frac{\chi(n)}{n}>\ln \left(\frac{2}{\sqrt{p}} \sum_{n=1}^{N-1} d_{n}+\frac{d_{N}}{\sqrt{p}}\right) \\
>\frac{\sqrt{p}}{2} \sum_{n=1}^{\left[\frac{p}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln p}{2}
\end{gathered}
$$

where $N=\frac{p-1}{4}, d_{0}=1$ and $2 n d_{n}=\sum_{v=1}^{n}(1+$ $\left.\left(\frac{v}{p}\right) \sqrt{p}\right) d_{n-v}, 1 \leq n \leq N$. (Here $\left(\frac{x}{y}\right)$ denotes the

Legendre symbol.)

Proof. By [11], we have

$$
h \ln \varepsilon=\ln \left(\frac{2}{\sqrt{p}} \sum_{n=1}^{N-1} d_{n}+\frac{d_{N}}{\sqrt{p}}\right)
$$

On the other hand, by Theorem 4, we have
$\frac{\sqrt{p}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{p}{2}\right]} \frac{\chi(n)}{n}>h>\frac{\sqrt{p}}{2 \ln \varepsilon} \sum_{n=1}^{\left[\frac{p}{2}\right]} \frac{\chi(n)}{n}-\frac{\ln p}{2 \ln \varepsilon}$, hence Corollary follows.

References

[1] T. M. Apostol: Introduction to Analytic Number Theory. Springer-Verlag, New York, Belin, Heidelberg, Tokyo (1976).
[2] R. Ayoub: An Introduction to the Analytic Theory of Numbers. Mathematical surveys, no. 10, Amer. Math. Soc., Providence (1963).
[3] D. A. Burgess: Estimating $L_{\chi}(1)$, Norske Vid. Selsk. Forh. (Trondheim), 39 (1966); 101-108 (1967).
[4] H. Cohn: Advanced Number Theory. Dover, New York (1980).
[5] H. Davenport: On the series for $L(1)$. J. London Math. Soc., 24, 229-233 (1949).
[6] P. Erdös: A theorem of Sylvester and Schur. J. London Math. Soc., 9, 282-288 (1934).
[7] D. Hanson: On a theorem of Sylvester and Schur. Canad. Math. Bull., 16, 195-199 (1973).
[8] D. H. Lehmer: The prime factors of consecutive
integers. Amer. Math. Monthly 72, no. 2, part II, 19-20 (1965).
$[9]$ M.-G. Leu and W.-C. Li: On the series for $L(1, \chi)$ (to appear in Nagoya Mathematical Journal).
[10] S. Louboutin: Majorations explicites de $|L(1, \chi)|$. C. R. Acad. Sci. Paris, Sér. I Math., 316, 11-14 (1993).
[11] T. Ono: A deformation of Dirichlet's class number formula. Algebraic Analysis, 2, 659-666 (1988).
[12] J. Pintz: Elementary methods in the theory of L-functions. VII. Upper bound for $L(1, \chi)$, Acta. Arith., 32, 397-406 (1977).
[13] C. L. Siegel: Über die Classenzahl quadratischer Zahlkörper. Acta. Arith., 1, 83-86 (1935).
[14] P. J. Stephens: Optimizing the size of $L(1, \chi)$. Proc. London Math. Soc., 24, 1-14 (1972).
[15] T. Tatuzawa: On a theorem of Siegel. Japan. J. Math., 21, 163-178 (1951).

[^0]: 1991 Mathematics Subject Classification. Primary: 11M20, 11R11, 11R29.

 This research is supported in part by the National Science Council of the Republic of China.

