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1. Introduction. Let k be a positive inte-
ger greater than 1, and let z(n) be a real primi-
tive character modulo k. The series

L(1, 27)= , 27(n)
n=l

can be divided into groups of k consecutive
terms. Let v be any nonnegative integer, j an inte-
ger, 0 <--j<-- k-- 1, and let

+ (vk + n) + X. (n)T(v,j,z) Z Z Z vk+n"n=j+l uk + Ill n=j+l

27(n)
1_ ],=o T(v, j 27)Then L(1, 27) E=-We remind the reader that a real primitive

character (mod k) exists only when either k or
k is a fundamental discriminant, and that the

character is then given by

where d is k or k, and the symbol is that of
Kronecker (see, for example, Ayoub [2] for the
definition of a Kronecker character).

In [5], Davenport proved the following

theorem:
Theorem (H. Davenport). If Z(--1) 1,

then T(v, O, 27) > 0 for all v and k. If27 (-- 1)
1, then T(0,0, X) > 0 for all k, and T(v, O, 27)

> 0 if v > v(k): but for any integer r>_ 1 there
exist values of k for which

T(1,0, 27) < 0, T(2,0, 27) < 0,...,
T(r, O, 27) < O.

In [9], Leu and Li derived the following

result about T(v, [-1, 27).
Theorem A. If 27 (--1) =1, then T(v [-] 27 )

< 0 for all v and k, where Ix] denotes the greatest
integer <-- x.
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Combining the results of Davenport [5] and
Theorem A of Leu and Li, we have the following

interesting inequalities.
Theorem B. If 27 (- 1) 1, then

[] (n)
(1.1)

27(n) < L(1, 27)< E 2:.
n=l /// n=l

/g

In section 2, we will prove that T(v, j, 27)
:/: 0 for prime integer k > 2, nonnegative integer

v and j 0,1,2,..., k 1. In section 3, we will

derive the inequalities for L(1, 27)on even real
primitive character modulo k’

[] (n) In k [{]

=xz n / < L(1 27)< 27(n____))
(1.2)

n=l
/g

On the other hand, using Siegel-Tatuzawa’s low-
er bound for L(1, 27)(See [15] and [13]) and
Louboutin’s upper bound for L(1, 27)(See [10],
[31, [14], and [12]), one also has inequalities for
L(1, 27) on even real primitive character modulo
k (with one possible exception coming from ap-

plying Siegel-Tatuzawa’s theorem [1 5]):
10.655 1

<L(1, ) -<-lnk(1.3) 4 k
1/4

2 + 9"- ln(4zr)+ 2
11.2

where k _> e and 7 denotes Euler’s constant.

From the facts limk_.
Ink (-v 0 and limk_.= In k

0.655 1/4)4 k- oo, it is clear that the inequali-

ties (1.2) provides much better estimate for
L(1, 27) than the inequalities (1.3) does. In these
days, computing facilities are highly developed,
the inequalities (1.2) may be used to investigate

varied problems related to L(1, 27). In section 4,
we will derive a class number formula for the
real quadratic fields:

If positive integer k is not of the form
m + 4 (m N), then

[ ( [] Z..(n)]h- 21nt n=l n
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where h and s > 1 denote the class num-
ber and the fundamental unit of the real
quadratic field Q(-), respectively.
If k= m2+4(m Nandm-> 3),then

21n s
__

n
where 0 or 1 depends on whether- / [}] x(n)]- _+_ E(k) is an even2Ins n=l- nk

integer or an odd integer, where E(k) is 1
or 0 depending on whether k is a prime or
not a prime.

2. T(v, j, X) =/= O. In order to prove the
main result of this section, we need the following
propositions and lemmas.

Proposition 1. Let a and bi be any pair of
nonzero integers without any common divisors (i
1,2,..., n). If there exists a prime number p and a
positive integer o such that P"l b, for some integer
l, 1

_ _
n, and pa X bj for any integer j, 1

_
j_

n and j : l, then
n

Proof. For integers 1,2,..., n, we ex-
press, by hypothesis, b pzrn with mi an inte-
ger without prime factor p and an integer
satisfying c>i_> 0 for i4 l and i--> c for
i l. Write II=l bi ptM, where t fll +’’"
+ fin and observe that M IIi; rn is an integer
without prime factor p. We have

Z a.,P‘-’ M
a_A m =. X
bi atM ptM

Write the numerator N as a sum of two parts
M.,or_a, M + a Then

N .,0,_, M M
p,_, X a + a

M
a (modp)

0 (rnodp)
since a and b have no common divisors and

M
fit > O, hence a is an integer without prime

factor p. This implies that N :/: O, and therefore
n ai

Lemma 1. If (:)is divisible by apower of a

prime p’, then pa<_n. (The expression (n)
n!

(n m)!m! ")

Proof See, e.g., P. Erd6s [6, pp. 283], for a

proof. [
The following lemma is a result of Hanson

[71:
Lemma 2. The product of m consecutive inte-

gers n (n + 1)... (n + rn 1) greater than m
3

contains a prime divisor greater than- m with the

exceptions 3"4, 8"9 and 6" 7"8"9" 10.
3

By a simple calculation, we see that s> m

for integer m 2 4200, where s is the number of
positive integers which are smaller than m and
divisible by either 2 or 3 or 5 or 7. In combina-
tion with table of prime numbers < 5000, we
have the following lemma.

Lemma 3. For integer m 50, (m)
31
100 m, where (m) denotes

primes less than or equal to m.
Applying a method of Hanson [7] and Lemma

3, we have
Proposition 2. For integer m 50 and inte-

ger n m has prime factor greater than

2.
Proo For m 2 50, by Lemma 3, (m)

100 m. Suppose that
n

has no prime factor

greater than 2m. Lemma 1 implies

However since

m m m--1 1
we must have

38

the number of

which is false if m

_
nlOO, and the proposition

follows. [-]
For any positive odd integer m > 1, there

exists a unique positive integer c such that
2 < m < 2+1.

Lemma 4. Let Z be a real primitive character
modulo a positive odd prime integer k and ce the in-
teger such that 2a < k < 2a+l. For any nonnega-
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tive integer v and integer j, 0 g j<_ k-- 1, if
(v + 1)k is not divisible by 2, then

T(v, j, 2:) 4= O.
2 2+Proof Since < k < there is at least

one integer, among k consecutive integers vk + j
+ 1,..., vk + j q- k, divisible by 2a. Among in-
tegers vk + j + 1,..., vk + j + k, it is also
clear that there are at most two integers, say vk
+ j + and vk + j + i., which are divisible by
2a. If il 4: 2, then only one of them, say vk + j
+ i, is divisible by 2a+. By assumption vk-t-j

+i4: (v+ 1)k, therefore z(vk+j+i) 4: O,
and by Proposition 1, we have that T(v, j,
0. If il i2, again by assumption and Proposition
1, T(v, j, 2:) 4= O.

Now, we are ready to derive Theorem 1:
Theorem 1. Let 2: be a real primitive charac-

ter modulo a positive odd prime integer k, k >-3
and v a nonnegative integer. Then

T(v, j, 2:) 4= 0 for j 0,1,2,..., k 1.

Proof The case v 0 has been proved in

Proposition 1 of [9]. For v 4 0, we divide the
argument into two cases:

Case 1. k > 100.
By Lemma 4, it is enough to discuss the case

21 (v + 1)k, where c is the integer such that 2
< k < 2a+l.

For any fixed positive integer v such that 2
(v + 1)k and any fixed integer j (j 0,1,2,...,
k- 1), by Lemma 2, there exists a prime p,

3> - k such that p[ (vk + j + io) for some inte-

ger io in the closed interval [1, hi. If j + io k,
by Proposition 1, T(v, j, 2:) :/= 0. If j q- io k,

then either io [1, [-]] or io [[] + 1, k].
If io [[-] q-1, k], by Proposition 2, there

exists aprime q,q >2 [-] such that q[(vk

+ i)for some integer i in the closed interval

11, (No e. In the case j+ io k, we have
100

that vk>- 2pk-- k= k(2p-- 1) > k38 for k
> 100.) Since q > k, we know that q X (vk + j
+ i) for any integer in [1, k] and i4: i. By
Proposition 1, T(v, j, 2:) 4= O. For the case io

[1, [-]], the similar argument implies that

T(v, j, 2:) 4= O.

Case 2. 3_< k< 100.
By applying Proposition 1, Lemma 2, Lemma

4 and the results of Lehmer [8], we have that
T(v, j, 2:) 4:0 for any positive integer v and in-
teger j, 0

3. Estimating L(1, 2:). In this section, we

use Abel’s identity and P61ya’s inequality to de-
rive the inequalities (1.2) and in the next section,
as an application, we use inequalities (1.2) to
give a class number formula for the real quadra-
tic fields.

We begin by recalling the results of Abel
and P61ya.

Lemma 5. For any arithmetical function
a(n) let

A (x) a(n)

where A(x)--0 if x< 1. Assume f has a con-

tinuous derivative on the interval [y, x], where
0 < y<x. Then

a(n)f(n) A(x) f(x) A(y)f(y)
y<n

A(t) f’(t) dt.

Lemma 6. Let 2: be a primitive character
modulo integer k, S ’_,n<B2:(n). Then

Is[ </lnk.
The proofs of Lemma 5 and Lemma 6 can be

found in [1, pp. 77] and in [1, pp. 173], respec-
tively. We remark that the integer k in Lemma 6
can be either a prime or a composite integer.

From the definition of Kronecker character
we know that 2: (n) 2: (-- n)sgn(d), where d is
the fundamental discriminant equal to k or --k
(cf. [2, page 292]). If both k and --k are fun-
damental discriminants (which happens if and
only if k 8k’, where k’ is odd and squarefree)
there are two real primitive characters (Kroneck-
er character)(mod k), otherwise only one. Clearly,
we have that 2:(--1) 1 if and only if d > 0.
In this section and the next section we restrict

ourselves to the case d k. Fix such an iateger

k, let 2: be a real primitive character attached to
the real quadratic field Q(-) with 2: (-- 1) 1.

1
Let A (x) n<x2: (n) and f(x) -, then,

applying the properties

2:(n,

0. By Theorem B mentioned in section 1 and
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Abel’s identity (Lemma 5), we easily have the fol-
lowing theorem.

Irl /’ A(t)
Theorem 2. z (n) A (r)

k dt
n= I/1 t" "Jr t
(n)

<L(1, 2:) <
n-’-I

where l<_r<_ [].
A(r) [’[] A(t)

r 3, t
dt,

Remark. It might be possible that there ex-
ist integers k and small integer r--r(k)such
that A(t) is bounded by small number for t in the

interval-lr, [-]] or even better situation may

occur for t in the interval [r, k]. In those cases,

r Z (n)
the finite sum n--1 n can be used to estimate

L(1, Z).
k

For the case r---, we obtain, as a corol-

lary of Theorem 2, the inequalities (1.2):

Theorem 3. 2: (n) Ink
n=l I/l V

(n).2: z
n=l

Proof.

Write

2: (n)

From Theorem B, we have

< L(1, 2:) <

By applying Abel’s identity, we have

(n) A(k) A\2]
Z Zn k k f_ A(t)f’(t)dt

_-fA(:)t dt,

1
where A(x) ,<xX(n) and f(x) - for x >
0. Now applying P01ya’s inequality, we have

(n) /’ A(t)

.= [] +
n J t

1 lnk(ln k -fi dt
Therefore, we obtain the desired inequalities

[] Z (n) In k Z (n)
.=z" n / <.=1 n <L(1, Z) <

X
n=l

Remark. Applying Theorem 1 of [15], we
1

know that L(1, Z)> with one possible
40k

1/4

exception. Since
kl/4
>- for large k and

40

ztn)>L(1 Z) it is quite sure that

[}] Z (n) In k
n--1 n / > 0 for large integer k. As

an example, we consider k--17, we have that

Z (n) In 17
n 0.344987688 is better

1
than , 0.012311976.

4. Class number formula. Dirichlet’s class
number formula asserts that

h= t(1, Y)
2In e

where k is the fundamental discriminant, h is the
class number, and e(> 1)is the fundamental unit
of Q(v). Before deriving a new class number
formula for the real quadratic fields, we recall a
well-known result:

Lemma 7. If the discriminant of a quadratic

field contains only one prime factor, then the class
number of the field is odd.

The proof can be found in [4, pp. 187].
As an application of Theorem 3, we have the

following inequalities.
Theorem 4.

z (n)
2Ins n=xZ" n

Corollary 1.

In k v< h L(1 Z)21n e 21n e

z (n)
2Ins n=l n

If k =- 1 (mod 4) is a prime,

then the class number h- 1 if and only if
Z (n) _< 6In s
n

Proof By Lemma 7, the class number h is

v V[] z(n) K 3, then, by Theoremodd. If 21ne "= n
4, h 1. Again, by using Theorem 4, we have

/ [] 9(: (n) < h + ln____k
2In = n 2In "If h 1, we see that
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]2: (n) 2In In k
n=l -21n21n 2 21n 2

4- +
21n 21n 2In 61n

Corollary 2. If positive integer k is not of the

form m + 4 (m N) then

h-- 21n n=l n J"
a+ bv

Proof. Let -- 2 ( > 1) be the

fundamental unit of Q(v-). From the properties
]] 1 ands > 1, weknow b> 0.

We divide the argument into two cases"

Casel. b > 1.

2 Ink < 1, whichClearly, > k. Thus 21n
implies, by Theorem 4,

h 21ns ,__
Case 2. b= 1.

z (n) ]

Since ] 1 and k, by assumption, is not
2 2

of the form m + 4 (m N), we have a k
4. Because > 1, so a v/k + 4. We have

lnk < 1 which
v/k + 4 + v > - Hence 21n2
implies

2Ins .=1 n

Corollary 3. /f k= m+ 4(m N and m
--> 3), then

h 2Ins =1 n

where i= 0 or i= 1 depends on whether 2Ins

t2rkl= x(n)]n + E(k) is an even integer or an odd

integer, where E(k) is 1 or 0 depending on whether
k is a prime or not a prime.

Proof. For simplicity, let A 21n *--

X (n). Since the fundamental unit

m+/m2+4
2 we easily have > k which

3 Ink
By Theorem 4 A--

3
gives > 21n - < A

In k < h < A. Therefore, there are at most two21n
distinct integers contained in the interval ]A-

A]-if,
We divide the argument into two cases"

Case 1. k is prime.
By Lemma 7, the class number h is odd.

Hence h [.4] i, where 0 or 1 depends on
the integer [A] is odd or even.

Case 2. k is not a prime.
By the genus theory of quadratic number

fields, the class number h h+ 2t-lh * (for the
case 1), where h+ is the class number of

h*Q(() in the narrow sense, is the number of
classes in a genus, and t is the number of distinct

prime factors of k. The restriction on k gives

that the class number h is even. Hence h
[A] i, where 0 or 1 depends on the integer
[A] is even or odd. [--]

Combining Theorem 4 and the class number
formula of Ono [11], we can get the following in-
teresting inequalities without involving the class
number h and the fundamental unit .

Corollary 4. Let p =--1 (mod 4) be a prime.
Then

V-2 n=l

[] x(n)> ln(-- N-ln=l dn + dp)
.= n 2

where N
p 1

4

Legendm symbol.)
Proof By [ll],we have

hln ln(5- d)
On the other hand, by Theorem 4, we have

[] E(n)>h> [] E(n)
21n ,= n 21n ,=1 n

hence Corollary follows.

, do 1 and 2nd, ,=1 (1 +
n <-- N. (Here () denotes the

In p
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