On the Rank of the Elliptic Curve $y^2 = x^3 - 1513^2x$

By Hideo WADA

Department of Mathematics, Sophia University (Communicated by Shokichi IYANAGA, M. J. A., Feb. 13, 1996)

§1. Method to be used. Let r_n be the rank of the elliptic curve $y^2 = x^3 - n^2 x$. We will prove in this paper r_n is two for n = 1513 =17.89 using Tate's method (cf. [3]).

If $x/y = u^2$ for some rational number u, we write $x \sim y$. Consider the diophantine equations: (1) $dX^4 - (n^2/d) Y^4 = Z^2, d | n^2, d + \pm 1, d + \pm n$ $dX^4 + (4n^2/d) Y^4 = Z^2, d \mid 4n^2, d \neq 1$ (2)

Let $\{d_1, \ldots, d_{\mu}\}$ be the set of d's for which (1) is solvable in X, Y, Z with $(X, (n^2/d)YZ) = (Y,$ dXZ = 1 and $\{d_{\mu+1}, \ldots, d_{\mu+\nu}\}$ be the set of d's for which (2) is solvable in X, Y, Z with (X, $(4n^2/d) YZ = (Y, dXZ) = 1$ (we assume $d_i +$ d_j for $1 \le i < j \le \mu$ and for $\mu + 1 \le i < j \le \mu$ + ν). Then $2^{r_n+2} = (4 + \mu)(1 + \nu)$ which gives r_n .

For $n = 17 \cdot 89$, we have a solution of (1): $17^2 \cdot 89 \cdot 3^4 - 89 \cdot 5^4 = 1424^2$ and a solution of(2): $2 \cdot 17 \cdot 89 \cdot 7^4 + 2 \cdot 17 \cdot 89 \cdot 5^4 = 3026^2$. Therefore we get $r_n \ge 2$. For proving $r_n = 2$, we must show that the next five diophantine equations have no solutions.

 $17 \cdot 89X^4 + 4 \cdot 17 \cdot 89Y^4 = Z^2$ (3)

(4)
$$17X^{4} + 4 \cdot 17 \cdot 89^{2}Y^{4} = Z^{2}$$

(5) $17 \cdot 89^{2}X^{4} + 4 \cdot 17Y^{4} = Z^{2}$

(5)

(6)
$$89X^4 + 4 \cdot 17^2 \cdot 89Y^4 = Z^2$$

 $89 \cdot 17^2 X^4 + 4 \cdot 89 Y^4 = Z^2$ (7)

§2. Non solvability of (3)-(7). If (3) is solvable then $Z = 17 \cdot 89W$ for some integer W and we get $X^4 + 4Y^4 = 17 \cdot 89W^2$. This equation can be written as $(X^2)^2 + (2Y^2)^2 = (27^4 + 28^2)W^2$. We need next lemma (cf. [2] p. 317).

Lemma. When a = odd, b = even, $c = a^2$ (x, y) = 1, x =odd, y = 1even and $x^{2} + y^{2} = cz^{2} = (a^{2} + b^{2})z^{2}$. Then we have

 $(ax + by + cz)(ax - by - cz) = -c(y + bz)^{2}$ d = (ax + by + cz, ax - by - cz) = twice a square

Proof. Put A = ax + by + cz, B = ax - byby - cz. Then $AB = a^{2}x^{2} - b^{2}y^{2} - 2bcyz - c^{2}z^{2}$

$$= a^{2}(cz^{2} - y^{2}) - b^{2}y^{2} - 2bcyz - c^{2}z^{2}$$

= $c(a^{2}z^{2} - y^{2} - 2byz - cz^{2})$
= $c(-y^{2} - 2byz - b^{2}z^{2})$
= $-c(y + bz)^{2}$

As $A \equiv B \equiv 0 \pmod{2}$ and $d \mid A + B = 2ax$, we have $2 \parallel d$. Let p be an odd prime divisor of d. Then $p \mid ax$ and $p \mid y + bz$ because c is square free. If $p \mid a$ then $p \mid (y + bz)(y - bz) = a^2 z^2 - bz$ x^2 . So we have $p \mid x$. If $p \mid x$ then $p \mid az$. But (x, z)= 1, so we have $p \mid a$. If $p \mid y - bz$ then $p \mid (y + bz)$ bz) + (y - bz) = 2y. But (x, y) = 1, so we have $p \neq y - bz$. Let $p^k || a, p^l || x$. When k < l then $p^{2k} || y + bz$. So we have $p^{2k} || d$. When k > l we have $p^{\overline{2}l} \parallel d$. When k = l, we have $p^{2k} \mid d$. But $d \mid A + d$ B = 2ax, so we have $p^{2k} \parallel d$. Therefore d is twice a square.

From this lemma, we can find c_1, c_2, u, v such that

 $ax = c_1u^2 - c_2v^2$, $c_1c_2 = c$, 2uv = y + bzWhen $x = X^2$, $y = 2Y^2$, z = W, a = 27, b = 28then x = odd because of $(X, 4 \cdot 17 \cdot 89YZ) = 1$ and we have

$$27X^{2} = c_{1}u^{2} - c_{2}v^{2}, c_{1}c_{2} = 17 \cdot 89$$

Using $17 \equiv 1 \pmod{4}, \left(\frac{27}{17}\right) = -1, \left(\frac{89}{17}\right) = 1,$

we have a contradiction. So (3) has no solution.

If (4) is solvable, then Z = 17W for some integer W and we get

 $(X^{2})^{2} + (2 \cdot 89Y^{2})^{2} = (1^{2} + 4^{2})W^{2}$ As X is odd, we have W = odd, Y = even and $X^2 = c_1 u^2 - c_2 v^2$, $c_1 c_2 = 17$, $2uv = 2 \cdot 89 Y^2 + 4W \equiv 4 \pmod{8}$ From this we have $c_1 u^2 - c_2 v^2 \equiv \pm 3 \pmod{8}$.

This is a contradiction. So (4) had no solution. In the same way, (5) has no solution.

If (6) is solvable, then Z = 89W for some integer W and we get

 $(X^2)^2 + (2 \cdot 17Y^2)^2 = (5^2 + 8^2)W^2$

As X is odd, we have W = odd, Y = even and $5X^2 = c_1 u^2 - c_2 v^2, \ c_1 c_2 = 89,$

 $2uv = 2 \cdot 17Y^2 + 8W \equiv 0 \pmod{8}$

Therefore $c_1u^2 - c_2v^2 \equiv \pm 1 \pmod{8}$. This is a

No. 2]

contradiction. So (6) has no solution. In the same way, (7) has no solution. Therefore we get $r_{1513} = 2$. Similarly we can get $r_{7361} = 2$.

References

- [1] K. Noda and H. Wada: All congruent numbers less than 10000. Proc. Japan Acad., 69A, 175-178 (1993).
- [2] J. H. Silverman: The Arithmetic of Elliptic Curves. GTM106, Springer-Verlag (1986).
- [3] J. H. Silverman and J. Tate: Rational Points on Elliptic Curves. Springer-Verlag (1992).
- [4] H. Wada and M. Taira: Computations of the rank of elliptic curve $y^2 = x^3 - n^2 x$. Proc. Japan Acad., **70A**, 154–157 (1994).