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1. Method to be used. Let rn be the rank
of the elliptic curve y--x- n x. We will
prove in this paper rn is two for n--1513
17" 89 using Tate’s method (cf. [3]).

If x/y for some rational number u, we
write x y. Consider the diophantine equations"
(1) dX4 (n2/dO y4 Z2, din2, d + +_ 1, d + n
(2) dX4 + (4n2/d) Y4- Z, d 4n, d+ 1
Let {dl,..., du} be the set of d’s for which (1) is
solvable in X, Y, Z with (X, (n/d) YZ) (Y,
dXZ) 1 and {du+l,..., d+v} be the set of d’s
for which (2) is solvable in X, Y, Z with (X,
(4n2/d) YZ)= (Y, dXZ)-1 (we assume di+
dj for 1 <_ i < j <- tz and for / + 1 <- < j -< t
+ v). Then 2r"+2- (4 +/J) (1 -+- iv) which gives

r,.
For n- 17"89, we have a solution of (1):

172. 89" 34 89- 54 14242 and a solution of(2):
2" 17" 89" 74 %- 2" 17" 89" 54 30262. Therefore
we get rn_> 2. For proving rn 2, we must
show that the next five diophantine equations
have no solutions.
(3) 17" 89X4 -- 4" 17" 89 y4 Z
(4) 17X4 + 4"17"892Y4- Z2

(5) 17"89X4 -+- 4"17Y4-- Z
(6) 89X4 + 4" 172. 89 y4 Z
(7) 89"17X4 + 4" 89y4 Z

2. Non solvability of (3)-{7). If (3) is solv-
able then Z-- 17" 89W for some integer W and
we get X4 + 4y4 17" 89W2. This equation can

be written as (X2)2+ (2Y2)2= (274-+ 282 W2.
We need next lemma (cf. [2] p. 317).

Lemma. When a odd, b-even, c= a
-+- b2: square free, (x, y) 1, x: odd, y--

2
even and x + y cz (a2+ b2)z2. Then we
have
(ax + by-+- cz) (ax- by- cz) c(y + bz)
d: (ax + by+ cz, ax-- by-- cz) twice a

square

Proof Put A ax-F by + cz, B ax-
by- cz. Then

2y2AB- a x b 2bcyz-- c z

a (cz2--y b --2bcyz-- cz
C(/2z --y 2byz-- cz2)

2Z2c(-- y --2byz-- b
c(y + bz)

As A B 0 (mod 2) and d lA + B 2ax,
we have 2 d. Let p be an odd prime divisor of d.
Then p lax and PlY + bz because c is square
free. If p a then p (y + bz) (y- bz) a z
x So we have p lx. f p lx then p[ az. But (x, z)

1, so we have p la. If Ply- bz then p[(y +
bz) + (y- bz) 2y. But (x, y) 1, so we have
pXy--bz. Letpklla, pt]Jx. When k< then

Y + bz. So we have IId. When k >/we have
d, When k l, we have p  ld. But d lA /

B 2ax, so we have pk d. Therefore d is twice
a square.

From this lemma, we can find Q, c2, u, v
such that

ax-- clu c2v clc2 c, 2uv= y + bz
X yWhen z ,=2 ,= W, a-27, b=28

then z odd because of (X, 4" 17" 89YZ) 1
and we have

27X= c cv cc= 17"89

Using 17---l(mod4), (2-7) 1 (8-7) =1
we have a contradiction. So (3) has no solution.

If (4) is solvable, then Z 17W for some in-
teger W and we get

(X2) + (2" 89Y2)2= (12 -+- 42) W
As X is odd, we have W odd, Y even and

X cu c2v, cc2= 17,
2uv= 2" 89Y2+4W--- 4 (modS)

From this we have clu --c2v -= -----3 (modS).
This is a contradiction. So (4) had no solution. In
the same way, (5) has no solution.

If (6) is solvable, then Z 89 W for some in-
teger W and we get

(X2) -+- (2" 17Y2)2= (52 + 82) W
As X is odd, we have W odd, Y even and

5X ell/ C21. ClC2 89,
2uv-- 2" 17Y2-+-8W=-0 (mod8)

Therefore clu --c2v -----1 (mod 8). This is a
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contradiction. So (6) has no solution. In the same
way, (7) has no solution. Therefore we get rls13
2. Similarly we can get r731 2.
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