On the Rank of the Elliptic Curve $y^{2}=x^{3}-1513^{2} x$

By Hideo WADA
Department of Mathematics, Sophia University
(Communicated by Shokichi Iyanaga, M. J. A., Feb. 13, 1996)

§1. Method to be used. Let r_{n} be the rank of the elliptic curve $y^{2}=x^{3}-n^{2} x$. We will prove in this paper r_{n} is two for $n=1513=$ $17 \cdot 89$ using Tate's method (cf. [3]).

If $x / y=u^{2}$ for some rational number u, we write $x \sim y$. Consider the diophantine equations: (1) $d X^{4}-\left(n^{2} / d\right) Y^{4}=Z^{2}, d \mid n^{2}, d \uparrow \pm 1, d \neq \pm n$ (2) $d X^{4}+\left(4 n^{2} / d\right) Y^{4}=Z^{2}, d \mid 4 n^{2}, d+1$

Let $\left\{d_{1}, \ldots, d_{\mu}\right\}$ be the set of d 's for which (1) is solvable in X, Y, Z with $\left(X,\left(n^{2} / d\right) Y Z\right)=(Y$, $d X Z)=1$ and $\left\{d_{\mu+1}, \ldots, d_{\mu+\nu}\right\}$ be the set of d 's for which (2) is solvable in X, Y, Z with (X, $\left.\left(4 n^{2} / d\right) Y Z\right)=(Y, d X Z)=1$ (we assume $d_{i}+$ d_{j} for $1 \leq i<j \leq \mu$ and for $\mu+1 \leq i<j \leq \mu$ $+\nu)$. Then $2^{r_{n}+2}=(4+\mu)(1+\nu)$ which gives r_{n}.

For $n=17 \cdot 89$, we have a solution of (1): $17^{2} \cdot 89 \cdot 3^{4}-89 \cdot 5^{4}=1424^{2}$ and a solution of (2) : $2 \cdot 17 \cdot 89 \cdot 7^{4}+2 \cdot 17 \cdot 89 \cdot 5^{4}=3026^{2}$. Therefore we get $r_{n} \geq 2$. For proving $r_{n}=2$, we must show that the next five diophantine equations have no solutions.

$$
\begin{align*}
17 \cdot 89 X^{4}+4 \cdot 17 \cdot 89 Y^{4} & =Z^{2} \tag{3}\\
17 X^{4}+4 \cdot 17 \cdot 89^{2} Y^{4} & =Z^{2} \tag{4}\\
17 \cdot 89^{2} X^{4}+4 \cdot 17 Y^{4} & =Z^{2} \tag{5}\\
89 X^{4}+4 \cdot 17^{2} \cdot 89 Y^{4} & =Z^{2} \tag{6}\\
89 \cdot 17^{2} X^{4}+\quad 4 \cdot 89 Y^{4} & =Z^{2} \tag{7}
\end{align*}
$$

§2. Non solvability of (3)-(7). If (3) is solvable then $Z=17 \cdot 89 W$ for some integer W and we get $X^{4}+4 Y^{4}=17 \cdot 89 W^{2}$. This equation can be written as $\left(X^{2}\right)^{2}+\left(2 Y^{2}\right)^{2}=\left(27^{4}+28^{2}\right) W^{2}$. We need next lemma (cf. [2] p. 317).

Lemma. When $a=$ odd, $b=$ even, $c=a^{2}$ $+b^{2}=$ square free, $(x, y)=1, x=$ odd, $y=$ even and $x^{2}+y^{2}=c z^{2}=\left(a^{2}+b^{2}\right) z^{2}$. Then we have
$(a x+b y+c z)(a x-b y-c z)=-c(y+b z)^{2}$ $d=(a x+b y+c z, a x-b y-c z)=$ twice a square

Proof. Put $A=a x+b y+c z, B=a x-$ $b y-c z$. Then

$$
A B=a^{2} x^{2}-b^{2} y^{2}-2 b c y z-c^{2} z^{2}
$$

$$
\begin{aligned}
& =a^{2}\left(c z^{2}-y^{2}\right)-b^{2} y^{2}-2 b c y z-c^{2} z^{2} \\
& =c\left(a^{2} z^{2}-y^{2}-2 b y z-c z^{2}\right) \\
& =c\left(-y^{2}-2 b y z-b^{2} z^{2}\right) \\
& =-c(y+b z)^{2}
\end{aligned}
$$

As $A \equiv B \equiv 0(\bmod 2)$ and $d \mid A+B=2 a x$, we have $2 \| d$. Let p be an odd prime divisor of d. Then $p \mid a x$ and $p \mid y+b z$ because c is square free. If $p \mid a$ then $p \mid(y+b z)(y-b z)=a^{2} z^{2}-$ x^{2}. So we have $p \mid x$. If $p \mid x$ then $p \mid a z$. But (x, z) $=1$, so we have $p \mid a$. If $p \mid y-b z$ then $p \mid(y+$ $b z)+(y-b z)=2 y$. But $(x, y)=1$, so we have $p \times y-b z$. Let $p^{k}\left\|a, p^{l}\right\| x$. When $k<l$ then $p^{2 k}$ $\| y+b z$. So we have $p^{2 k} \| d$. When $k>l$ we have $p^{2 l} \| d$. When $k=l$, we have $p^{2 k} \mid d$. But $d \mid A+$ $B=2 a x$, so we have $p^{2 k} \| d$. Therefore d is twice a square.

From this lemma, we can find c_{1}, c_{2}, u, v such that

$$
a x=c_{1} u^{2}-c_{2} v^{2}, c_{1} c_{2}=c, 2 u v=y+b z
$$

When $x=X^{2}, y=2 Y^{2}, z=W, a=27, b=28$ then $x=$ odd because of $(X, 4 \cdot 17 \cdot 89 Y Z)=1$ and we have

$$
27 X^{2}=c_{1} u^{2}-c_{2} v^{2}, c_{1} c_{2}=17 \cdot 89
$$

Using $17 \equiv 1(\bmod 4),\left(\frac{27}{17}\right)=-1,\left(\frac{89}{17}\right)=1$,
we have a contradiction. So (3) has no solution.
If (4) is solvable, then $Z=17 W$ for some integer W and we get

$$
\left(X^{2}\right)^{2}+\left(2 \cdot 89 Y^{2}\right)^{2}=\left(1^{2}+4^{2}\right) W^{2}
$$

As X is odd, we have $W=$ odd, $Y=$ even and

$$
\begin{gathered}
X^{2}=c_{1} u^{2}-c_{2} v^{2}, c_{1} c_{2}=17 \\
2 u v=2 \cdot 89 Y^{2}+4 W \equiv 4(\bmod 8)
\end{gathered}
$$

From this we have $c_{1} u^{2}-c_{2} v^{2} \equiv \pm 3(\bmod 8)$. This is a contradiction. So (4) had no solution. In the same way, (5) has no solution.

If (6) is solvable, then $Z=89 W$ for some integer W and we get

$$
\left(X^{2}\right)^{2}+\left(2 \cdot 17 Y^{2}\right)^{2}=\left(5^{2}+8^{2}\right) W^{2}
$$

As X is odd, we have $W=$ odd, $Y=$ even and

$$
5 X^{2}=c_{1} u^{2}-c_{2} v^{2}, c_{1} c_{2}=89
$$

$2 u v=2 \cdot 17 Y^{2}+8 W \equiv 0(\bmod 8)$
Therefore $c_{1} u^{2}-c_{2} v^{2} \equiv \pm 1(\bmod 8)$. This is a
contradiction. So (6) has no solution. In the same way, (7) has no solution. Therefore we get $r_{1513}=$ 2. Similarly we can get $r_{7361}=2$.

References

[1] K. Noda and H. Wada: All congruent numbers less than 10000. Proc. Japan Acad., 69A, 175178 (1993).
[2] J. H. Silverman: The Arithmetic of Elliptic Curves. GTM106, Springer-Verlag (1986).
[3] J. H. Silverman and J. Tate: Rational Points on Elliptic Curves. Springer-Verlag (1992).
[4] H. Wada and M. Taira: Computations of the rank of elliptic curve $y^{2}=x^{3}-n^{2} x$. Proc. Japan Acad., 70A, 154-157 (1994).

