
where $\tau: \operatorname{Tr}_{H}(k) \rightarrow C_{+}(k)$ is given by (4.4) $\quad \tau(t)=(\tan (A / 2), \tan (B / 2), \tan (C / 2))$. All other notation in (4.3) should be selfexplanatory and the proof goes similarly as before.

Examples and comments. When $k=\boldsymbol{Q}$, elements of $\operatorname{Tr}_{\boldsymbol{H}}(\boldsymbol{Q})$ are called "rational triangles" or "Heron triangles" ([1] Chap. V). Heron of Alexandria noted that $t=(13,14,15)$ belongs to $\operatorname{Tr}_{H}(\boldsymbol{Q})$ with $\Delta=84$. By our map (4.4) it corresponds to the point $(1 / 2,4 / 7,2 / 3)$ of the quadric $\boldsymbol{C}_{+}(\boldsymbol{Q})$. On the other hand, by our map (1.6) it corresponds to the point $(1 / 4,16 / 49,4 / 9)$ of the quartic $S_{+}(\boldsymbol{Q})$.

Obviously, every right triangle $t=(a, b, c)$ $\in \operatorname{Tr}(k)$ belongs to $\operatorname{Tr}_{H}(k)$. Assume that $C=$ $\pi / 2$; hence $a^{2}+b^{2}=c^{2}$. Then $\tau(t)=(a /(b+c)$, $b /(a+c), 1)$ and $\theta(t)=\left(a^{2} /(b+c)^{2}, b^{2} /(a+c)^{2}\right.$, 1). In both cases the image of right triangles with $C=\pi / 2$ is the intersection of the surface in $k_{+}{ }^{3}$ and the plane $z=1$ (or $w=1$).

Needless to say, all equilateral triangles $t=$ ($a, a, a), a \in k_{+}$, are similar and so they correspond to a single point in the quartic surface. If k does not contain $3^{\frac{1}{2}}$, then $t \notin \operatorname{Tr}_{H}(k)$ because $\Delta_{t}=\left(3^{\frac{1}{2}} / 4\right) a$.
§5. An involution. For $t=(a, b, c) \in \operatorname{Tr}(k)$, put
(5.1) $t^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ with $a^{\prime}=a(s-a)$, $b^{\prime}=b(s-b), c^{\prime}=c(s-c), s=\frac{1}{2}(a+b+c)$.
Then one finds
(5.2) $s^{\prime}-a^{\prime}=(s-b)(s-c), s^{\prime}-b^{\prime}=(s-c)$

$$
(s-a), s^{\prime}-c^{\prime}=(s-a)(s-b)
$$

with $s^{\prime}=\frac{1}{2}\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$. By (5.1), (5.2), we obtain a map: $\operatorname{Tr}(k) \rightarrow \operatorname{Tr}(k)$. Furthermore, for
the image $t^{\prime \prime}=\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$ of $t^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, we get
(5.3) $\quad a^{\prime \prime}=a^{\prime}\left(s^{\prime}-a^{\prime}\right)=a d, b^{\prime \prime}=b d, c^{\prime \prime}=c d$, with $d=(s-a)(s-b)(s-c)$.
In other words, we have $t^{\prime \prime} \sim t$ and so the map $t \mapsto t^{\prime}$ induces an involution $*$ of $\widetilde{\operatorname{Tr}}(k)$. The only fixed point of $*$ is the class of equilateral triangle. By the diagram (2.5), we can transplant ${ }^{*}$ on $S_{+}(k)$ and $\tilde{\mathscr{E}}(k)$. On the surface $S_{+}(k)$, the involution $P=(x, y, z) \mapsto P=\left(x^{*}, y^{*}, z^{*}\right)$ is determined by the relation:

$$
\begin{gather*}
x x^{*}=y y^{*}=z z^{*}=(x y z) /\left(x(y z)^{\frac{1}{2}}\right. \tag{5.4}\\
\left.\quad+y(z x)^{\frac{1}{2}}+z(x y)^{\frac{1}{2}}\right)
\end{gather*}
$$

Example (Heron). Let $k=\boldsymbol{Q}$ and $t=(a$, $b, c)=(13,14,15) \in \operatorname{Tr}(\boldsymbol{Q})$. We have $s=21$, $s-a=8, s-b=7, s-c=6, \Delta=(s(s-a)$
$(s-b)(s-c))^{\frac{1}{2}}=84$, hence $t \in \operatorname{Tr}_{H}(\boldsymbol{Q})$. Next, by (5.1), we have $t^{\prime}=\left(a^{\prime} ; b^{\prime}, c^{\prime}\right)=(104$, $98,90), s^{\prime}=146$ and $\left(\Delta^{\prime}\right)^{2}=16482816=2^{9}$. $3^{2} \cdot 7^{2} \cdot 73$, which means that $t^{\prime} \notin \operatorname{Tr}_{H}(\boldsymbol{Q})$; in other words, the involution $*$ of $\widetilde{\operatorname{Tr}}(\boldsymbol{Q})$ does not respect the subset $\widetilde{T r}_{H}(\boldsymbol{Q})$. Passing to the surface $S_{+}(\boldsymbol{Q})$, we have

$$
\begin{aligned}
& \theta(t)=\left(1 / 2^{2}, 2^{4} / 7^{2}, 2^{2} / 3^{2}\right) \\
& \theta(t)^{*}=\left(2^{5} / 73,7^{3} /(2 \cdot 73),\left(2 \cdot 3^{2}\right) / 73\right)
\end{aligned}
$$

As for triples of elliptic curves, denoting by $[P, Q]$ for the curve of type (3.1), we have

$$
\begin{array}{r}
\boldsymbol{E}_{t}=\left(E_{a}, E_{b}, E_{c}\right)=\left(\left[126,-84^{2}\right],\left[99,{ }^{\prime \prime}\right]\right. \\
\boldsymbol{E}_{t}^{*}=\left(E_{a^{\prime}}, E_{b^{\prime}}, E_{c^{\prime}}\right)=\left(\left[3444,-2^{9} \cdot 3^{2} . "\right]\right), \\
\left.\left.7^{2} \cdot 73\right],[4656, "],[6160, "]\right)
\end{array}
$$

References

[1] Dickson, L. E.: History of the Theory of Numbers. vol. 2, Chelsea, New York (1971).
[2] Ono, T.: Triangles and elliptic curves. I ~VI. Proc. Japan Acad., 70A, 106-108(1994): 70A, 223-225 (1994) ; 70A, 311-314 (1994); 71A, 104-106 (1995); 71A, 137-139 (1995); 71A, 184-186 (1995).

I take this opportunity to make a correction to my paper (VI). On p. 186 , in (4.6), $x^{3}+4 x^{2}-3 x$ should read $x^{3}+2 x^{2}-3 x$.

