A Note on the Iwasawa λ-invariants of Real Quadratic Fields

By Humio ICHImURA
Dapartment of Mathematics, Yokohama City University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1996)

§1. Introduction For a number field k and a prime number p, denote respectively by $\lambda_{p}(k)$ and $\mu_{p}(k)$ the Iwasawa λ-invariant and the μ-invariant associated to the ideal class group of the cyclotomic \boldsymbol{Z}_{p}-extension over k. It is conjectured that $\lambda_{p}(k)=\mu_{p}(k)=0$ for any totally real number field k and any p ([11, p. 316], [7]), which is often called Greenberg's conjecture. As for μ-invariants, we know that $\mu_{p}(k)=0$ when k is an abelian field ([6]). The conjecture is still open even for real quadratic fields in spite of efforts of several authors (see Remark 2(2), Remark 3).

Let p be a fixed odd prime number and $k=$ $\boldsymbol{Q}(\sqrt{d})$ a real quadratic field. Denote by χ the primitive Dirichlet character associated to k. Let $\lambda_{p}^{*}(k)$ be the λ-invariant of the power series associated to the p-adic L-function $L_{p}(s, \chi)$ (cf. [21, Thm. 7.10]). We have $\lambda_{p}(k) \leq \lambda_{p}^{*}(k)$ by the Iwasawa main conjecture (proved in [15]). So, $\lambda_{p}(k)=0$ if $\lambda_{p}^{*}(k)=0$. But, there are several examples with $\lambda_{p}^{*}(k) \geq 1$ (cf. [7, p. 266], [3]). Thus, it is natural to consider the following weak conjecture:

$$
\lambda_{p}(k) \leq \max \left\{0, \lambda_{p}^{*}(k)-1\right\} ?
$$

Let χ^{*} be the primitive Dirichlet character associated to $\omega \chi^{-1}$, where ω denotes the Teichmüller character $\boldsymbol{Z} / p \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{p}$. When $\chi^{*}(p)=1$, it is known that $\lambda_{p}^{*}(k) \geq 1$ and the weak conjecture is valid (see e.g. [10]).

The purpose of this note is to give some families of infinitely many real quadratic fields k with $\chi^{*}(p) \neq 1$ for which $\lambda_{p}^{*}(k) \geq 1$ and the weak conjecture is valid.
§2. Result/Remarks. Fix an odd prime number p and a square free natural number r with $\left(\frac{r}{p}\right)=-1$, where $\left(\frac{*}{p}\right)$ denotes the quadratic residue symbol. For each natural number m, we put

$$
d_{m}^{(1)}=p^{4} r^{2} m^{2}+r, d_{m}^{(2)}=p^{4} m^{2}+p
$$

Denote by $k_{m}^{(i)}$ the real quadratic field
$\boldsymbol{Q}\left(\sqrt{d_{m}^{(i)}}\right)(i=1,2)$. The prime p remains prime in $k_{m}^{(1)}$, and ramifies in $k_{m}^{(2)}$. Further, we have $\chi^{*}(p) \neq 1$ for these real quadratic fields. We prove the following

Proposition. If $d_{m}^{(i)}$ is square free, then, $\lambda_{p}^{*}\left(k_{m}^{(i)}\right) \geq 1$ and the weak conjecture is valid for $k_{m}^{(i)}(i=1,2)$.

Remark 1. Since the polynomial $p^{4} r^{2} X^{2}+r$ (resp. $p^{4} X^{2}+p$) in X is irreducible in $Z[X]$, there exist infinitely many m 's for which $d_{m}^{(1)}$ (resp. $\boldsymbol{d}_{m}^{(2)}$) is square free ([16], [17]).

Remark 2. (1) It is well-known that $\lambda_{p}(k)=0$ for any quadratic field k such that $\left(\frac{k}{p}\right) \neq 1$ and $p \not x h(k), h(k)$ being the class number of k ([21, Thm. 10.4]). Let $p=3$ and $r=2$. Then, the family $\left\{k_{m}^{(1)}\right\}$ is "nontrivial" in the sense that we have several m satisfying the assumption of Proposition and $3 \mid h\left(k_{m}^{(1)}\right)$, for example, $m=1,3$. On the other hand, there are examples with $3 \times h\left(k_{m}^{(1)}\right)$ such as $m=2,4$. The family $\left\{k_{m}^{(1)}\right\}$ for $(p, r)=(5,2)$ and the family $\left\{k_{m}^{(2)}\right\}$ for $p=3,5$ are also nontrivial. The author does not know, for $p \geq 7$, whether or not, the families given in Proposition are nontrivial. (2) It is proved that there exist infinitely many real quadratic fields k such that $\left(\frac{k}{3}\right) \neq 1$ and $3 \times h(k)$ ([18]). So, we have infinitely many real quadratic fields k with $\lambda_{3}(k)=0$.

Remark 3. Several authors have given some criterions for the validity of Greenberg's conjecture or the weak conjecture (e.g. [4], [8], [9], [10], [12], [13], [14], [19], [20]). Using them, they have shown by some computation that $\lambda_{3}(k)=0$ for many real quadratic fields k with "small" discriminants. The key lemma (Lemma 2) we use in the proof is one of the existing criterions.
§3. Proof of Proposition. Let k be a real quadratic field with a fundamental unit ε and χ the associated Dirichlet character. We need the following two lemmas.

Lemma 1. If $\varepsilon^{p^{2}-1} \equiv 1 \bmod \left(\xi_{p}-1\right)^{p}$, then $\lambda_{p}^{*}(k) \geq 1$. Here, ξ_{p} denotes a primitive p-th root of unity.

Proof. Put $K=k\left(\mu_{p}\right)$ and $\Delta=\operatorname{Gal}(K / \boldsymbol{Q})$. Let K_{∞} / K be the cyclotomic \boldsymbol{Z}_{p}-extension with its n-th layer $K_{n}(n \geq 0)$. Denote by A_{n} the Sylow p-subgroup of the ideal class group of K_{n} and by $A_{\infty}=\lim A_{n}$ the projective limit w.r.t. the relative norms. Let ψ be any \boldsymbol{Q}_{p}-valued character of Δ. For a module M over \boldsymbol{Z}_{p} [Δ] (e.g., $M=$ A_{∞}, A_{n}), we denote by $M(\psi)$ its ψ-component. We regard $A_{\infty}(\psi)$ as a module over $\Lambda=$ \boldsymbol{Z}_{p} [[T]] by letting $1+T$ act as a (fixed) topological generator of $\operatorname{Gal}\left(K_{\infty} / K\right)$. Then, $A_{\infty}(\psi)$ is finitely generated and torsion over Λ by [11, Thm.5]. We regard χ and χ^{*} as \boldsymbol{Q}_{p}-valued characters of Δ. The λ-invariant $\lambda\left(A_{\infty}\left(\chi^{*}\right)\right)$ of the torsion Λ module $A_{\infty}\left(\chi^{*}\right)$ equals to $\lambda_{p}^{*}(k)$ by the Iwasawa main conjecture (proved in [15]). On the other hand, $\lambda\left(A_{\infty}\left(\chi^{*}\right)\right) \geq 1$ if $A_{0}\left(\chi^{*}\right) \neq\{1\}$ since χ^{*} is an odd character (cf. [21, Cor. 13.29]). So, it suffices to show that $A_{0}\left(\chi^{*}\right) \neq$ $\{1\}$. Let L / K be the maximal unramified abelian extension whose Galois group $G=\operatorname{Gal}(L / K)$ is of exponent p. Then, Δ acts on G in a natural way. By class field theory, we have a canonical isomorphism $G \simeq A_{0} / A_{0}^{p}$ compatible with the Δ-action. Let V be the subgroup of $K^{\times} / K^{\times p}$ such that

$$
L=K\left(\alpha^{1 / p} \mid[\alpha] \in V\right)
$$

From the Kummer pairing

$$
G \times V \rightarrow \mu_{p}
$$

we obtain the following isomorphism (cf. [21, Chap. 10]):

$$
\left(\left(A_{0} / A_{0}^{p}\right)\left(\chi^{*}\right) \simeq\right) G\left(\chi^{*}\right) \simeq \operatorname{Hom}\left(V(\chi), \mu_{p}\right)
$$

Since $\varepsilon^{p^{2}-1}$ is congruent to 1 modulo $\left(\xi_{p}-1\right)^{p}$, we see that the cyclic extension $K\left(\varepsilon^{1 / p}\right) / K$ of degree p is unramified (cf. [21, p. 183]). Hence, $([1] \neq)[\varepsilon] \in V(\chi)$. Therefore, we get $A_{0}\left(\chi^{*}\right) \neq$ $\{1\}$ from the above isomorphism.

Lemma 2 (cf. [19, §4]). Assume that $\left(\frac{k}{p}\right)$ $\neq 1$ and that $\varepsilon^{p^{2}-1} \equiv 1 \bmod \mathfrak{p}^{2}$, here \mathfrak{p} denotes the prime ideal of k over p. Then, we have $\lambda_{p}(k) \leq \max \left\{0, \lambda_{p}^{*}(k)-1\right\}$.

Proof of Proposition. The real quadratic fields given in Proposition are of "RichaudDegert types". We have a simple explicit formulas for a fundamental unit of a real quadratic
field of such types (e.g. [1, Lemma 3]). Using it, (since $d_{m}^{(i)}$ is square free,) we see that

$$
\begin{gathered}
\varepsilon=\left(2 p^{4} r m^{2}+1\right)+2 p^{2} m \sqrt{d_{m}^{(1)}} \\
\left(\text { resp. } \varepsilon=\left(2 p^{3} m^{2}+1\right)+2 p m \sqrt{d_{m}^{(2)}}\right)
\end{gathered}
$$

is a fundamental unit of $k_{m}^{(1)}$ (resp. $k_{m}^{(2)}$). Now, our assertion follows from this and lemmas.

Remark 4. In [2], a family of real quadratic fields for which a fundamental unit satisfies the assumptions of Lemmas 1 and 2 with $p=3$ is given in connection with a normal integral basis problem.

References

[1] T. Azuhata: On the fundamental units and the class numbers of real quadratic fields. Nagoya Math. J. , 95, 125-135 (1984).
[2] J. Brinkhuis: Normal integral bases problem and the Spiegelungssats of Scholz. Acta Arith., 69, 1-9 (1995).
[3] T. Fukuda: Iwasawa λ-invariants of imaginary quadratic fields. J. College Industrial Technology Nihon Univ., 27, 35-88 (1994).
[4] T. Fukuda and K. Komatsu: A capitulation problem and Greenberg's conjecture of real quadratic fields (to appear in Math. Comp.).
[5] T. Fukuda and H. Taya: The Iwasawa λ_{-} invariants of \boldsymbol{Z}_{p}-extensions of real quadratic fields. Acta Arith., 69, 277-292 (1995).
[6] B. Ferrero and L. Washington: The Iwasawa invariant μ_{p} vanishes for abelian number fields. Ann. of Math., 109, 377-395 (1979).
[7] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).
[8] H. Ichimura and H. Sumida: On the Iwasawa λ-invariants of certain real abelian fields (submitted for publication).
[9] H. Ichimura and H. Sumida: On the Iwasawa λ-invariant of the real p-cyclotomic field (submitted for publication).
[10] H. Ichimura and H. Sumida: On the Iwasawa λ-invariants of certain real abelian fields. II (submitted for publication).
[11] K. Iwasawa: On \boldsymbol{Z}_{ℓ}-extensions of algebraic number fields. Ann. of Math., 98, 246-326 (1973).
[12] J. S. Kraft: Iwasawa invariants of CM fields. J. Number Theory, 32, 65-77 (1989).
[13] J. S. Kraft and R. Schoof: Computing Iwasawa modules of real quadratic number fields. Compositio Math., 97, 135-155 (1995).
[14] M. Kurihara: The Iwasawa λ invariants of real abelian fields and the cyclotomic elements (1995) (preprint).
[15] B. Mazur and A. Wiles: Class fields of abelian extensions of \boldsymbol{Q}. Invent. Math., 76, 179-330 (1984).
[16] T. Nagell: Zur Arithmetik der Polynome. Abh. Math. Sem. Univ. Hamburg, 1, 179-184 (1922).
[17] M. Nair: Power free values of polynomials. Mathematika, 23, 159-183 (1976).
[18] J. Nakagawa and K. Horie: Elliptic curves with no rational points. Proc. A.M.S., 104, 20-24
(1988).
[19] M. Ozaki and H. Taya: A note on Greenberg's conjecture of real abelian number fields. Manuscripta Math. , 88, 311-320 (1995).
[20] H. Sumida: Greenberg's conjecture and the Iwasawa polynomial (submitted for publication).
[21] L. Washington: Introduction to Cyclotomic Fields. Springer-Verlag, New York, Heidelberg, Berlin (1982).

