## Property C with Constraints for PDE

By A. G. RAMM

Department of Mathematics, Kansas State University, U.S.A. (Communicated by Kiyosi ITÔ, M. J. A., Dec. 12, 1996)

Abstract: Let  $L_j$ , j = 1,2, be a pair of linear partial differential expressions in  $\mathbb{R}^n$ ,  $n \geq 3$ ,  $D \subset \mathbb{R}^n$  be a bounded domain,  $N_j := \{w : L_j w = 0 \text{ in } D\}$ ,  $N_{j,m_j}$  is a linear subspace in  $N_j$  of finite codimension  $m_j < \infty$ . We say that the pair  $\{L_1, L_2\}$  has property C if the set of products  $\{w_1 w_2\}$  is complete (total) in  $L^p(D)$  for some  $p \geq 1$ . Here  $w_j \in N_j$  run through subsets of  $N_j$  such that the products  $w_1 w_2$  are well defined. We say that the pair  $\{L_1, L_2\}$  has property C with constraints if the set  $\{w_1 w_2\}$ , where  $w_j \in N_{j,m_j}$ , j = 1,2, is total in  $L^p(D)$ . It is proved that if  $L_1$  and  $L_2$  have constant coefficients and the pair  $\{L_1, L_2\}$  has property C then it has property C with constraints.

Key words: Property C with constraints; inverse problems; completeness of the set of products.

1. Introduction. The author introduced property C for pairs  $\{L_1, L_2\}$  of linear partial differential expressions in [1] and has found many applications of this property [2]. In [3] he introduced property C with constraints and found several applications of this concept to inverse spectral problem, inverse boundary problem and inverse scattering problem.

In [2] necessary and sufficient conditions for property C to hold for a pair of linear partial differential expressions (formal differential operators) with constant coefficients are found.

The basic result of this paper is the following theorem.

**Theorem 1.1.** If  $\{L_1, L_2\}$  are linear formal partial differential operators in  $\mathbb{R}^n$ ,  $n \geq 3$ , with constant coefficients and property C holds for the pair  $\{L_1, L_2\}$ , then property C with constraints holds for this pair.

In section 2 we define property C and property C with constraints and recall some results from [2].

In section 3 we prove Theorem 1.1.

2. Basic definitions and known results.

2.1. Let  $L_m u(x) = \sum_{|j| \le J_m} a_{jm}(x) \partial^j u(x)$ ,  $m = 1, 2, x \in \mathbb{R}^n, n \ge 2, j$  is a multi-index,  $a_{jm}(x)$  are given functions,  $J_m > 0$  is an integer,  $\partial^j u := \frac{\partial^j u}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}}, j_1 + \cdots + j_n := |j|$ . We call  $L_m$  a linear formal differential operator.

Let  $D \subset \mathbb{R}^n$  be a bounded domain,  $N_m := \{w: L_m w = 0 \text{ in } D\}, f \in L^p(D), p \ge 1$ . The equation  $L_m w = 0$  is understood in distributional sense. Assume that

(2.1)  $\int_{D} f w_{1} w_{2} dx = 0, \quad w_{m} \in N_{m}$ for all  $w_{m} \in N_{m}$  for which  $w_{1} w_{2} \in L^{p'}(D), p' = \frac{p}{p-1}$ .

**Definition 2.1.** If (2.1) implies that f = 0, then we say that the pair  $\{L_1, L_2\}$  has property C.

**Remark 2.1.** The name "property C" comes from "completeness of the set of products  $\{w_1w_2\}$  [2].

We give now a necessary and sufficient condition for a pair  $\{L_1, L_2\}$  of operators with constant coefficients,  $a_{jm}(x) = a_{jm} = const$ , to have property C.

(2.2) Define  

$$\mathcal{L}_m := \{ z : z \in C^n, L_m(z) = 0 \},$$

$$L_m(z) = \sum_{|i| \le L_m} a_{jm} z^i.$$

Let  $T_m(z_0)$  be the tangent space in  $C^n$  to the algebraic variety  $\mathscr{L}_m$  at the point  $z_0$ .

**Theorem 2.1.** ([2,p.44]). For a pair  $\{L_1, L_2\}$  to have property C it is necessary and sufficient that there exist two points  $z_m \in L_m$ , such that the tangent spaces  $T_m(z_m)$ , m = 1,2, are transversal.

**Remark 2.2.** Geometrically this means that the variety  $\mathcal{L}_1 \cup \mathcal{L}_2$  is not a union of parallel hyperplanes in  $\mathbb{C}^n$ .

2.2. We now define property C with con-

<sup>1991</sup> Mathematics Subject Classification. 35E20, 35R30, 35P10.

straints. Let  $N_{m,M(m)}$  be a linear subspace in  $N_m$  of finite condimension  $M(m) < \infty$ , m = 1,2. Assume that (2.1) holds for all  $w_m \in N_{m,M(m)}$  such that  $w_1 w_2 \in L^{p'}(D)$ .

**Definition 2.2.** If, under the above assumption, equation (2.1) implies f = 0, then we say that the pair  $\{L_1, L_2\}$  has property C with constraints.

In what follows we assume that  $L_m$  have constant coefficients. Let  $z \cdot x := \sum_{j=1}^n z_j x_j$ .

**Remark 2.3.** The function  $\exp(z \cdot x) \in N_m$ iff  $z \in \mathcal{L}_m$ .

3. Proof of Theorem 1.1. Assume that the pair  $\{L_1, L_2\}$  has property C, that is:

 $(3.1)\left\{0 = \int_{D} f(x) w_{1} w_{2} dx \quad \forall w_{m} \in N_{m}\right\} \Rightarrow f = 0.$ We want to prove that (3.1) implies that the pair

We want to prove that (3.1) implies that the pair  $\{L_1, L_2\}$  has property C with constraints, that is:

(3.2) 
$$\left\{ 0 = \int_{D} f(x) w_{1} w_{2} dx \quad \forall w_{m} \in N_{m,M(m)} \right\}$$
$$\Rightarrow f = 0$$

Take  $w_m = \exp(z_m \cdot x)$ ,  $z_m \in \mathcal{L}_m$ , m = 1,2. Let  $g_m(z_m)$  be a smooth function on  $\mathcal{L}_m$ , decaying faster than  $\exp(c |z_m|)$  for any c > 0, and  $\sigma_m(z_m)$  be a finite measure on  $\mathcal{L}_m$ . The function

(3.3) 
$$w_m(x) := \int_{\mathscr{L}_m} d\sigma_m(z_m) \exp(z_m \cdot x) g_m(z_m)$$

belongs to  $N_{m,M(m)}$  provided that

(3.4) 
$$0 = \int_{\mathscr{L}_m} d\sigma_m g_m(z_m) H_{m\kappa}(z_m), 1 \le \kappa \le M(m);$$
$$H_{m\kappa}(z_m) := \langle \exp(z_m \cdot x), h_{m\kappa} \rangle, m = 1, 2.$$

Here we took into account the constraints:  $w_m \in N_{m,M(m)}$  implies  $\langle w_m, h_{mx} \rangle = 0, 1 \leq \kappa \leq M(m)$ , where  $\langle w_m, h_{mx} \rangle$  is a linear functional on  $N_m$ . If  $w_m$  are defined in (3.3), then quation (3.2) becomes

(3.5) 
$$0 = \int_{\mathscr{L}_1} d\sigma_1(z_1) g_1(z_1) \int_{\mathscr{L}_2} d\sigma_2(z_2) g_2(z_2) F(z_1 + z_2); F(x) := \int_D dx f(x) \exp(z \cdot x),$$

where  $g_m$  satisfy (3.4).

We want to derive from (3.5) that F(z) = 0. This would imply f(x) = 0. It follows from (3.5) and (3.4) that

(3.6) 
$$\int_{\mathscr{L}_2} d\sigma_2 g_2(z_2) F(z_1 + z_2) = \sum_{\kappa=1}^{M(1)} c_{\kappa} H_{1\kappa}(z_1),$$

where  $c_{\kappa}$  are some constants,  $g_2(z_2)$  satisfies (3.4) with m = 2, and otherwise  $g_2$  is arbitrary.

Therefore, one can choose J > M(1) linearly independent functions  $\varphi_j(z_2)$  and some numbers  $d_j$ ,  $1 \le j \le J$ , such that

(3.7) 
$$\int_{\mathscr{L}_2} g_2(z_2) H_{2\kappa}(z_2) d\sigma_2(z_2) = 0, \ 1 \le \kappa \le M(2),$$
where

(3.8) 
$$g_2(z_2) = \sum_{j=1}^j d_j \varphi_j(z_2).$$

We *claim* that, for any integer J, one can choose  $\varphi_j(z_2)$  such that the functions

(3.9) 
$$\int_{\mathscr{L}_2} d\sigma_2(z_2) \varphi_j(z_2) F(z_1 + z_2) := \omega_j(z_1),$$
  
  $1 \le j \le J,$ 

are linearly independent. If this is done, then (3.6) leads to a contradiction, unless F(z) = 0, or, which is the same, unless f(x) = 0. Indeed, the left-hand side of (3.6) is a linear span of J > M(1) linearly independent functions by the *claim*, while the right-hand side of (3.6) is obviously a linear span of M(1) < J linearly independent functions. These linear spaces are identical by (3.6), which contradicts the fact that they have different dimensions. This contradiction proves Theorem 1.1. To complete the proof, let us verify the above *claim*. Let J > 0 be an arbitrary integer,  $f(x) \in L^p(D)$ ,  $p \ge 1$ ,  $D \subset \mathbb{R}^n$  is a bounded domain,  $F(z) := \int_{\mathbb{R}} f(x) \exp(z \cdot x) dx$ ,

$$\begin{aligned} & \Omega_{\kappa}(z_1) := \int_{\mathscr{L}_2} d\sigma_2 \omega_{\kappa}(z_2) F(z_1 + z_2), \quad z_m \in \mathscr{L}_m, \ m \\ &= 1, 2. \end{aligned}$$

**Lemma 3.1.** If  $\{L_1, L_2\}$  has property C and  $f \neq 0$ , then there exist J functions  $\omega_{\kappa}(z_2)$  such that the functions  $\{\Omega_{\kappa}(z_1)\}_{1 \leq \kappa \leq J}$  are linearly independent.

Proof. We want to prove that dim  $R(T) = \infty$ , where  $\Omega(z_1) := T\omega := \int_{\mathscr{L}_2} F(z_1 + z_2)\omega(z_2)$  $d\sigma_2(z_2)$  and R(T) = range of T. Take  $\omega_j = \delta(z_2 - z_2^{(j)}), \ 1 \le j \le J, \ z_2^{(j)} \in J$ 

 $\mathscr{L}_2, J$  is an arbitrary large fixed integer, and  $\delta(z_2 - z_2^{(j)})$  is the delta-function. Then

$$\Omega_j := \int_D dx f(x) \exp(z_1 \cdot x + z_2^{(j)} \cdot x).$$

Let  $z_m^0 \in \mathscr{L}_m$  be such that the tangent spaces  $T_m$  to  $\mathscr{L}_m$  at  $z_m^0$  are transversal, m = 1,2. Let  $\{e_1, \dots, e_{n-1}\}$  be an orthonormal basis in  $T_1$  and, since by the assumption  $T_1$  is transversal to  $T_2$ , there is a vector  $f_1$  in the basis of  $T_2$ , such that  $(f_1, e_n) \neq 0$ . Without loss of generality (and for simplicity) one can assume that  $f_1 = e_n$ ,  $(e_x, e_j) = \delta_{xj}$ ,  $1 \leq j, \kappa \leq n$  (the inner product is taken in  $\mathbb{C}^n$  but the vectors  $e_x$  are real-valued: they form a basis

of  $\mathbf{R}^n$ ). Fix an arbitrary number  $\zeta_n$  and find  $\zeta_{\kappa}^{(j)}$ ,  $1 \leq \kappa \leq n-1$ ,  $1 \leq j \leq J$ , such that

$$z_2^{(j)} = \sum_{\kappa=1}^{n-1} \zeta_{\kappa}^{(j)} e_{\kappa} + \zeta_n e_n \in \mathcal{L}_2, \ \zeta_{\kappa}^{(j)} \neq \zeta_{\kappa}^{(j')} \text{ for } j \neq j'.$$

Index  $\kappa$  denotes the coordinate component and j denotes the number of the chosen point.

One can choose  $\zeta_n$  independently of j: the variety  $\mathscr{L}_2$  is defined by the equation  $L_2(\zeta) = 0$ and  $\frac{\partial L_2}{\partial \zeta_n} \neq 0$  on  $\mathscr{L}_2$  since  $T_2$  and  $T_1$  are transversal. In a neighborhood of the points where  $\frac{\partial L_2}{\partial \zeta_n} \neq 0$  one can write the equation of  $\mathscr{L}_2$  as  $\zeta_n = \phi(\zeta'), \zeta' := (\zeta_1, \cdots, \zeta_{n-1})$ . Thus, for a fixed  $\zeta_n$ , one can find, in general, infinitely many points  $\zeta'$  such that  $(\zeta', \zeta_n) \in \mathscr{L}_2$ , provided that  $n \geq 3$ . Fix J such points.

Suppose that  $\zeta_n$  is so chosen that the function  $h(x', \zeta_n) := \int_a^b f(x', x_n) \exp(i\zeta_n x_n) dx_n \neq 0$ . Here  $x' := (x_1, \ldots, x_{n-1})$ , and [a, b] is a finite interval since D is a bounded domain. Clearly there exists an open set of the numbers  $\zeta_n$  such that  $h(x', \zeta_n) \neq 0$ . Indeed,  $h(x', \zeta_n)$  is an entire function of  $\zeta_n$  which cannot vanish on open sets of the  $\zeta_n$ -axis unless  $f(x', x_n) \equiv 0$ , and we assumed that  $f(x) \neq 0$ . With the above choice of  $\zeta_i^{(j)}$ ,  $1 \leq j \leq J$ , and  $\zeta_n$ , one has (3.10)

$$\Omega_{j} = \int_{D} dx f(x', x_{n}) \exp(\zeta_{n} x_{n}) \exp[(z_{1} + \zeta^{(j)}) \cdot x']$$
$$= \int_{D'} dx' h(x', \zeta_{n}) \exp[(z_{1} + \zeta^{(j)}) \cdot x']$$

where  $z_1 \in \mathcal{L}_1$  is arbitrary,  $\zeta^{\cup} + \zeta_n e_n \in \mathcal{L}_2$ , and D' is the (parallel to  $e_n$ ) projection of D onto

 $\mathbf{R}^{n-1}$ . Without loss of generality one may assume that D is a cylinder  $D' \times [a, b]$ . In a neighborhood  $\mathcal{N}(z_j^0)$  of  $z_1^0$  the points  $z_1 \in \mathcal{L}_1$  are very close to  $T_1$ . The function  $\Omega_j$  is an entire function of the variable  $z_1$ . This variable runs through an open set in  $\mathbf{C}^{n-1}$  when  $z_1$  runs through  $\mathcal{N}(z_1^0)$ . Thus, if

$$(3.11) \qquad 0 = \sum_{j=1}^{J} c_{j} \Omega_{j}$$
  

$$:= \int_{D'} dx' h(x', \zeta_{n}) \sum_{j=1}^{J} c_{j} \exp((\zeta^{(j)}) \cdot x') \exp(z_{1} \cdot x'),$$
  

$$\forall z_{1} \in \mathcal{N}(z_{1}^{0}), \text{ then}$$
  

$$(3.12) \quad h(x', \zeta_{n}) \sum_{j=1}^{J} c_{j} \exp(\zeta^{(j)}) \cdot x') \equiv 0 \quad \forall x'.$$
  
Since  $h(x', \zeta_{n}) \not\equiv 0$ , it follows that  

$$(3.13) \quad \sum_{j=1}^{J} c_{j} \exp(\zeta^{(j)} \cdot x') = 0 \quad \forall x'.$$
  
Since  $\zeta^{(j)} \neq \zeta^{(i)}$  for  $j \neq i$ , equation (3.13) implies  

$$c_{j} = 0, 1 \leq j \leq J.$$
 Therefore the set  $\{T\omega_{j}\}, 1$   

$$\leq j \leq J, \text{ is linearly independent. Since } J > 0 \text{ is arbitrary, this means that dim } R(T) = \infty.$$
 Lem-

ma 3.1 is proved. 🛛

Therefore Theorem 1.1 is proved.

## References

- [1] A. G. Ramm: On completeness of the products of harmonic functions. Proc. A. M. S., 99, 253-256 (1986).
- [2] A. G. Ramm: Multidimensional inverse scattering problems. Longman/Wiley, New York, (1992); Mir Publishers, Moscow, (Russian edition of the expanded monograph [2]), (1994).
- [3] A. G. Ramm: Property C with constraints and inverse problems. J. of Inverse and Ill-Posed Problems. 1, 3, 227-230 (1993).