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Abstract" Let Lj, j- 1,2, be a pair of linear partial differential expressions in Rn,
n >- 3, D Rn

be a bounded domain, Nj’-- {w’Lw 0 in D}, N,mj is a linear sub.space
in N of finite codimension rn < oo. We say that the pair {L1, L2} has property C if the set
of products {wlw2} is complete (total) in L’(D) for some p -> 1. Here wj N run through
subsets of N such that the products ww. are well defined. We say that the pair {L1,
Le} has property C with constraints if the set {ww.}, where w N,m, j 1,2, is total in
ff’(D). It is proved that if L and L. have constant coefficients and the pair (L, L.} has
property C then it has property C with constraints.

Key words’ Property C with constraints; inverse problems’ completeness of the set of
products.

1. Introduction. The author intrbduced
property C for pairs {LI, L} of linear partial
differential expressions in [1] and has found
many applications "of this property [2]. In [3] he
introduced property C with constraints and
found several applications of this concept to in-
verse spectral problem, inverse boundary prob-
lem and inverse scattering problem.

In [2] necessary and sufficient conditions for
property C to hold for a pair of linear partial
differential expressions (formal differential oper-
ators) with constant coefficients are found.

The basic result of this paper is the follow-
ing theorem.

Theorem 1.1. If {L, L} are linear formal
partial differential operators in Rn, n >- 3, with
constant coefficients and property C holds for the
pair {LI, L}, then property C with constraints
holds for this pair.

In section 2 we define property C and prop-
erty C with constraints and recall some results
from [2].

In section 3 we prove Theorem 1.1.
2. Basic definitions and known results.
2.1. Let Lu(x) lJl<] a(x) u(x),

m- 1, 2, x R, n 2 2, j is a multi-index,

am(x) are given functions, ]m> 0 is an integer,

ou
Dx[.." Dx. j + / j.’- jl We
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call Lm a linear formal differential operator.
Let D Rn

be a bounded domain, Nm "=

{w’Lmw 0 in D}, f Lp(D), p _> 1. The
equation Lmw 0 is understood in distributional
sense. Assumd that

(2.1) fwwdx--- O, Wm Nm

for all wm Nm for which wiw Lp’(D),
P

p-l
Definition 2.1. If (2.1) implies that f O,

then we say that the pair (L, L.} has property C.
Remark 2.1. The name "property C" comes

from "completeness of the set of products {ww} [2].
We give now a necessary and sufficient con-

dition for a pair (L1, L.} of operators with con-
stant coefficients, ajm(X) am const, to have
property C.

Define

(2.2) m {z z Cn Lm (z) 0}
Lm(z) X almzi.

I11
Let Tm(zo) be the tangent space in Cn

to the
algebraic variety m at the point zo.

Theorem 2.1. ([2,p.44]). For a pair {L,
to have property C it is necessary and sufficient that
there exist two points zm Lm, such that the tan-
gent spaces Tm(zm), m 1,2, are transversal.

Remark 2.2. Geometrically this means that
the variety U is not a union of parallel hyper-
planes in C.

2.2. We now define property C with con-
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straints. Let gn,M(m be a linear subspace in Nm
of finite condimension M(m) < oo, rn 1,2.
Assume that (2.1) holds for all wm N,n,M(m)
such that WlW Lp’(D).

Definition 2.2. Ifi under the above assump-
tion, equation (2.1) implies f O, then we say that
the pair {L, Le} has property C with constraints.

In what follows we assume that Lm have
constant coefficients. Let z’x "= n= zx.

Remark 2.3. The function exp(z, x) N
iff z .

3. Proof of Theorem 1.1. Assume that the
pair {L, Le} has property C, that is:

(3.1)0:f(x)wwdx V wN}f=O.
We want to prove that (3.1) implies that the pair
{L, Le} has property C with constraints, that is:

(3.2) {0- f(x)wlWdx V w Nm,M(m)}
Take w= exp(z’x), z , m= 1,2.

Let g(z) be a smooth function on , decaying
faster than xp(clzl) for any c > 0, and

a(z) be a finite measure on . The function

(3.3) w(x) "=

_
da(z)exp(z.x)g(z)

belongs to N,M( provided that

(3.4) 0 __2dag(z)H(z), 1 x M(m);

H(z) := (exp(z. x), h), m 1,2.
Here we took into account the constraints: w
gm,M(m) implies (W, h) 0, 1 N x g M(m),
where (w, h) is a linear functional on N. If

w are defined in (3.3), then quation (3.2) becom-
es

2

+ z); F(x)"= dxf(x)exp(z.x),F(Zl

where g satisfy (3.4).
We want to derive from (3.5) that F(z) O.

This would imply f(x) 0. It follows from (3.5)
and (3.4) that

(.6) dg()F(z + ) cH(),

where c are some constants, gz(ze) satisfies (3.4)
with m 2, and otherwise ge is arbitrary.

Therefore, one can" choose ] > M(1) linearly
independent functions P(ze)and some numbers

d, 1 N j N ], such that

(3.7) __Je.g (z)H.(z) da (z2) 0, 1 <_ x <_ M(2),

where

(3.8) g(z.) doi(z.).
i=1

We claim that, for any integer ], one can choose

0i(z.) such that the functions

(3.9) f da.(z.)q(z)F(zl + z.) "= w(Zl),
l<_i<_J,

are linearly independent. If this is done, then
(3.6) leads to a contradiction, unless F(z)= O,
or, which is the same, unless f(x)= 0. Indeed,
the left-hand side of (3.6) is a linear span of ]
M(1) linearly independent functions by the
claim, while the right-hand side of (3.6) is
obviously a linear span of M(1) < ] linearly in-
dependent functions. These linear spaces are
identical by (3.6), which contradicts the fact that
they have different dimensions. This contradic-
tion proves Theorem 1.1. To complete the proof,
let us verify the above claim. Let ] > 0 be an
arbitrary integer, f(x) Lp (D), p 2 1, D c Rn

is a bounded domain, F(z)"= ff(x)exp(z’x)dx,
(zl) "= _; da.w (z.) F(zl + z) z
1,2.
Lemma 3.1. If {L1, L} has property C and

f O, then there exist ] functions wu(ze) such that
the functions {[2 (z1) } 1<<] are linearly indepen-
dent.

Proof We want to prove that dim R(T)

where D(zl) "= Too "= _Fo F(zl "- z.)oo(z)

da (z.) and R (T) range of T.
Take co 8(z- z;i’), 1 _< j _< ], zi,

LP, ] is an arbitrary large fixed integer, and
(i)8(z2 ze is the delta-function. Then

fD (i)D dxf(x) exp(zl x + z x).
oLet z, .m be such that the tangent spaces

0
to at z are transversal, m 1,2. Let {e,’’’,
en_l} be an orthonormal basis in T1 and, since by
the assumption T is transversal to T, there is a
vector f in the basis of T2, such that (f, e)

0. Without loss of generality (and for simplic-
ity) one can assume that f e,,, (e, ei) (,i, 1
< j, < n (the inner product is taken in C but
the vectors e are real-valued’ they form a basis
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/ (J)
of Rn). Fix an arbitrary number n and find ,
1 -- <-- n-- 1, 1 _j<_J, suchthat

zj) nl , (j)
eg + nen 2, r() f) for j j’

Index denotes the coordinate component and j
denotes the number of the chosen point.

One can choose . independently of j" the
variety 2.is defined by the equation L2() 0

8L2and 0 on 2 since T2 and T are transver-

8L2sal. In a neighborhood of the points where

0 one can write the equation of 2 as
(’), ’ "= (,..., ._). hus, or a fixed ,
one can find, in general, infinitely many points
such that (’, .) 2, provided that n 3.
Fix ] such points.

Suppose that . is so chosen that the func-

tion h(x’, ,) "= f(x’, z,)exp(i,x,)dx, O.

Here z’’= (z,..., z,_), and [a, b] is a finite
interval since D is a bounded domain. Clearly
there exists an open set of the numbers , such
that h(x’, ,) O. Indeed, h(z’, ,) is an entire
function 0f , which cannot vanish on open sets
of the ,-axis unless f(x’,z,) O. and we
assumed that f(z) O. With the above choice of
(, 1 _< j <_ ]. and ,. one has

where is arbitrary. ( + ,e, . and
D’ is the (parallel to e,) projection of D onto

Rn-1. Without loss of generality one may assume
that D is a cylinder D’ x [a, b]. In a neighbor-

0
hood N(z)of zl the points z are very
close to T. The function Dj is an entire function
of the variable z. This variable runs through an

open set in C"-1 when z runs through

Thus. if

(3.11) 0
j=l

V N(), then

(a.12) h(z’, ,) N c exp( ()’x’) 0

Since h(z’, ,) O. it follows that

(3.13) Z cexp(()’x’) 0 Vx’.
j=l

Since. ( ( for j i. equation (3.13)implies

c=0, lgjJ. Therefore the set (Tm), 1
N j N J. is linearly independent. Since J > 0 is
arbitrary, this means that dim R( . Lem-
ma .1 is proved.

Therefore Theorem 1.1 is proved.
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