On the Rank of the Elliptic Curve $y^2 = x^3 + k$. II

By Shoichi KIHARA

Department of Neuropsychiatry School of Medicine, Tokusima University (Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1996)

(1) In this paper, we consider the elliptic curve $\varepsilon_k : y^2 = x^3 + k.$

In our previous paper [3], we have shown that there are infinitely many values of $k \in Q$, for which the rank of ε_k is at least 5. We shall improve this result in this note. (See Theorem 2 below).

Let *a*, *b*, *c* be variables and put

$$k = E(a, b, c) = (a^6 + b^6 + c^6 - 2a^3b^3 - 2b^3c^3 - 2c^3a^3)/4.$$

Then there are the following 3 points on ε_k : $P(ab, (a^3 + b^3 - c^3)/2)$

$$P_{1}(ab, (a + b - c)/2), P_{2}(bc, (b^{3} + c^{3} - a^{3})/2), P_{3}(ca, (c^{3} + a^{3} - b^{3})/2).$$

Now let t be a variable, and put

(2)
$$a = 3t^3 - 49$$
, $b = 3t^3 + 16$, $c = 39$
 $d = -\frac{21}{2}t^2 + \frac{196}{3t}$, $e = \frac{24}{7}t^2 + \frac{196}{3t}$,
 $f = \frac{117}{14}t^2$.

Then we have E(a, b, c) = E(d, e, f) and (3) $k = k(t) = \frac{3080025}{4} t^{12} - \frac{37083501}{2} t^9 + \frac{905714433}{4} t^6$

> $-1884391236t^3 + 7953072400.$ where the property states are property to the property states are property states are property states are properly states are properl

This polynomial k(t) has the property (4) $k(t) = k\left(\frac{m}{t}\right) \frac{t^{12}}{m^6}$, where $m = \frac{14}{3}$

and our curve $\boldsymbol{\varepsilon}_{k(t)}$ has the following 6 points:

$$P_1 \Big(9t^6 - 99t^3 - 784, \\ 27t^9 - \frac{891}{2}t^6 + \frac{23913}{2}t^3 - 86436\Big)$$

$$P_{2}\left(117t^{3} + 624, \frac{1755}{2}t^{6} - \frac{19305}{2}t^{3} + 90532\right)$$
$$P_{3}\left(117t^{3} - 1911, \frac{1755}{2}t^{6} - \frac{10205}{2}t^{3} + 90532\right)$$

$$\frac{1755}{2}t^6 - \frac{19305}{2}t^3 + 31213\Big)$$

$$\begin{split} P_4 \Big(-36t^4 - 462t + \frac{38416}{9t^2}, \\ \frac{1701}{2}t^6 - \frac{23913}{2}t^3 + 45276 - \frac{7529536}{27t^3} \Big) \\ P_5 \Big(\frac{1404}{49}t^4 + 546t, \\ \frac{611091}{686}t^6 - \frac{19305}{2}t^3 + 89180 \Big) \\ P_6 \Big(-\frac{351}{4}t^4 + 546t, \end{split}$$

$$\frac{2457}{8}t^6 - \frac{19305}{2}t^3 + 89180\Big).$$

We remark also that our $k(t) \in \mathbf{Q}[t]$ has no square factor in $\mathbf{Q}[t]$ and that two elliptic curves $\varepsilon_{k_1}, \varepsilon_{k_2}$ for $k_1, k_2 \in \mathbf{Q}^* = \mathbf{Q} - \{0\}$ are \mathbf{Q} -isomorphic if and only if $k_2/k_1 = i^6$ for some $i \in \mathbf{Q}^*$. (cf. [1], §10, Corollary 5.4.1). As the Diophantine equation $k_1u^6 = k(t)$ for $t, u \in \mathbf{Q}^*$ (with a given $k_1 \in \mathbf{Q}^*$) has only a finite number of solutions by Faltings' theorem, we obtain an infinite number of $\varepsilon_{k(t)}$ with $k(t) \in \mathbf{Q}^*$ with 6 rational points which are not \mathbf{Q} -isomorphic, in specializing $t \in \mathbf{Q}$ in different ways.

Now we shall show that our $\varepsilon_{k(t)}$ has another point $P_7(x_7, y_7)$, using the following elliptic curve.

(5) $C: q^2 = p^3 + n$, n = 9256741632090000. We have $n = 2^4 * 3^4 * 5^4 * 79^2 * 1831129$, where 1831129 is a prime number, which assures that *C* has no torsion point (cf. [1] p.323). On the other hand, *C* contains the point (443664,310783788), so that *C* has an infinite number of rational points (*p*, *q*). Put t = -p/142200 Then $\varepsilon_{k(t)}$ contains $P_7(x_7, y_7)$ where

$$x_{7} = \frac{13p^{5}}{2^{10}3^{4}5^{6}79^{3}} - \frac{169q}{18960000} - \frac{235911}{800}$$
$$y_{7} = \frac{13p^{6}}{2^{19}3^{9}5^{11}79^{6}} + \frac{15821p^{3}}{2^{12}3^{3}5^{7}79^{3}} - \frac{6591q}{126400000} + \frac{1362504013}{16000}.$$

Theorem 1. P_1 , . . . , P_7 are independent

No. 10]

points on $\varepsilon_{k(t)}$.

Proof. We have noticed that (p, q) = (443664, 310783788) is on *C*. By specializing $t \rightarrow -443664/142200 = t_0$, we obtain from P_1, \ldots, P_7 on $\varepsilon_{k(t)}$ 7 rational points Q_1, \ldots, Q_7 on $\varepsilon_{k(t_0)}$, which are shown to be independent as in [3] by using duplication formula on elliptic curves. So we see that P_1, \ldots, P_7 are independent. Q.E.D.

As seen in the above proof, $\varepsilon_{k(t)}$ can be taken as an elliptic curve defined over the function field Q(C) of C and as C contains an infinite number of rational points (p, q), t can be specialized also in an infinite number of ways. From Theorem 1 and the Theorem 20.3 in [1] follows now.

Theorem 2. There are infinitely many elliptic curves of the form $y^2 = x^3 + k$ with rank at least 7 which are pairwise not Q-isomorphic.

References

- J. H. Silverman: The arithmetic of elliptic curves. Graduate Texts in Math., vol. 106, Springer-Verlag, New York (1986).
- [2] S. Kihara: On coprime integral solutions of $y^2 = x^3 + k$. Proc. Japan Acad., 63A, 13-16 (1987).
- [3] S. Kihara: On the rank of the elliptic curve $y^2 = x^3 + k$. Proc. Japan Acad., 63A, 76-78 (1987).