212

Proc. Japan Acad., 72, Ser. A (1996)

[Vol. 72(A),

Gamelin Constants of Two-sheeted Discs

By Masaru HARA

Department of Mathematics, Meijo University
(Communicated by Kiyosi ITO, M. J. A., Nov. 12, 1996)

For any 0 < § < 1 and #, an n-tuple {f;} of

functions f;, . . ., f, in the family H" (R) of
bounded holomorphic functions on a Riemann
surface R is referred to as a corona datum of in-
dex (n, 0) if the following condition is satisfied:
(1) < (I PP <.
An n-tuple {g,;} of functions g,,..., g, in H (R)
is said to be a corona solution of the datum {f}
if 22, f,g, = 1. The quantity C(R ; n, J) given by
(2) C(R ; n, 8 = sup(inf(sup(Z, | g, @) 1)

) g} peR

will be referred to as the Gamelin constant of R
of index (%, 8) where the first supremum is
taken with respect to corona data {f} of index
(n, 0) on R and the infimum is taken with re-
spect to corona solutions {g;} of each fixed
datum {f;} under the usual convention that inf,,
= oo if there exist no corona solutions {g;} of
the datum {f;}.

We assume that R is a two-sheeted unli-
mited covering surface over the unit disc D,
which we call a two-sheeted disc. We will show
the following

Theorem 1. For each 0 < 0 < 1, there exists
a constant C(0) depending only on 0 such that
3) C© = sup(sgp CR;n, 0) < oo,

n

where n runs over all positive integers and R runs
over all two-sheeted discs.

Corollary. Let R be any two-sheeted disc. Let
{f;} be a sequence of functions in H” (R) such that
0< o< (X1 I>Y!2 < 1. Then there exists a
sequence of functions (g} in H”(R) and a con-
stant ¢(0) depending only on 0 such that 22,f,8; =
1and (Z;] g; 1) < ¢(d).
Let (R, m, D) be any two-sheeted disc with pro-
jection 7. For any f in H" (D), the function f * 7
belongs to H”(R). We identify f with f - 7, so
that H” (D) is a subset of H (R). If R has too
many branch points, it holds that H”(R) =
H” (D), where Corollary was proved by M.
Rosenblum [5] and V. A. Tolokonnikov [6] (cf.
[4]).

1. In order to prove Theorem 1, by a normal
families argument it is enough to show the fol-
lowing

Theorem 2. Let R be a two-sheeted disc de-
fined by a two-valued function { = VB, where B is
a finite Blaschke product whose zeros are all simple.
If an n-tuple of
(4) fi=a,+byB (j=1,...,n)
is a corona datum of index (n, 6) on R such that a;
and b; are holomorphic on some neighbourhood of D,
then there exists a corona solution {g;} of {f} such
that

(Zj | gj |2)1/2 g C5—12’
where C is a constant independent of 6, B and n.

We will prove Theorem 2 in §§.2-7. In §.2
we introduce a function p, which plays an impor-
tant role in our proof. In §8.3 and 4 corona solu-
tions are given. By duality, those estimates are
reduced to ones of four functions, which are
accomplished in §8.5 and 6. Our proof is con-
cluded in §.7.

2. Let (+,*) and | + | be the inner product and
norm of C". Let a = (a,," **, a,), b= (b, - -,
b,) and f = (f," +, f),

6) o=lal'+16l'| BI*— (a, )°B — (b, ®)°B

+dalflol® =] » (B + D),

6) ;= (lalf + 161" a, — {(a, ) + (b, @) B}b,
and
(7) y, = — {(a, b) + (b, @)B}a,

+ lalf + 21" B,

Proposition 1. p, x; and y; are smooth on
some mneighbourhood of D such that o = 6* and
>,(a, + byB) @&, + gyB) = p.

Proof. By (1) and (4), we have
>, la;+byB|*>6"and =;|a; — byB | = 5°.
Since 2| B| < |B|*+ 1 and

Z;la;, +byBI")(Z,|la, — byB ")
=lal*+16]'| BI* = (a, »*B — (b, a)°B
+2(alf + 16 =1 (a 0 PIB
we obtain p = o*. O

We may assume that functions x; and y; are
smooth and have compact supports in the com-
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plex plane C.

3. Denote by ¢ the transpose operator of a mat-
rix. For 1 < 7, k < n, set

8) hy=p0'(& + gyB) and h = (hy, -, h,),
9) uy = o {(&0z, — £,0z) + 7,0y, — §,0y) B}

and » = [u,,],
(10) v, = o *{(Z,dy, — £,0y, + (F,0x, — §,0x,))
and v = [vjk]’

(11) wuy,(2) = %fj;%k_(%dédn and #, = [u,,]
and
(12) vy (2 = %f‘];%éc—é d&dn and v, = [vy;,],
then we have (@) = — ‘w and v = — ‘v, (B) 0
u,=wu and dv, = v, and (Pu + vVB = Ch)dh
— (@(h)h, where 8=0/0z=2"(3/dx—
i0/0y) and 8 =0/0Z=27"(8/0x + id/dy).
Denote by A,(D) a set of all xn-dimensional
square matrices W = [w;,] such that w;, are con-
tinuous on D and holomorphic on D. Then we
have d(W + u,) = u and 0(W + v,) = v for W
€ A,D).
4. For a matrix-valued function W= [w,] on
a set S, let

| Wl..s = ess.sups(Z,, | w,, )2
And, for a vector-valued function g = (g, -,
&,) on S, let

lgl.s = ess.supsCl g |”+ --- + g, )"

A matrix W is said to be anti-symmetric if W=
— 'W. We will give corona solutions {g;} of the
corona datum {fj}.

Proposition 2. Let W, and W, be anti-
symmetric in A,(D). Let = (W, + u,) + (W,
+ v,)VB and ‘g="'(g, -, 8,) ='h+ Qf
Then each g; is continuous on R and holomorphic
on R such that 22,f,8; = 1 and

12 s < 1 7 o+ W, + 280
+ | W, + v, ”oo,aD'

Proof. By Proposition 1, h'f= f'h=1.
Since fR'f is a one-dimensional and anti-
symmetric matrix, f2'f= 0 and hence X,f,g; =
flge=f'n+ fQ'f=1. The function g is con-
tinuous on R. Except for branch points,

3(g) = a(n) + {d(W, + u,) + (W, + v,)VB}'f

=39(Ch) + (u+ vwB)'f

= 3(n) + {ndh — @G(WINY'f

= a(n + 'h@M'N) — @MW) (h'f) = 0.
Since isolated singular points are removable for
bounded holomorphic functions, g is holomorphic
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on R. ]
In order to estimate | W, + #, |ln,5p and || W,

+ ¥4 ll,5p, we make use of the following lemmas.
Lemma 1. ([4: p. 290]). For w, = u, (or v,)

and w = u (or v),

inf{| W+ wy o sp; W E A,(D) and W= — "W}

1 172
< 25w, ([ [ 10 lwlFlog ;7 dudy)
1
+sup, [ [ 1ol |owlog 157 dedy,

where ¢ runs over all of Hardy class H % with norm

lol. <1 -
Lemma 2. ([4: p. 290)). If w € C°(D) such

that w = 0 and Aw > 0 and if ¢ € H®, then

(f.L' o |* (Aw) log]%[ dl‘dy)l/z

< (2re)sup,w) | ¢ |,
5. The following lemmas are elementary.
Lemma 3. |a||<1and|d| < 1.
Proof. By (1) and (4),
2{la,?+16,yB1> =la,+ b,yB|*+ | a, — b,
VB " < 2.
Hence ;| a;1°<1 and Z,;|b,VB|*< 1. The
function X, | b;|* is subharmonic. By the max-
imum principle,
=10, < sup,p =, 1 b, 1P = sup,, =, | byB P < 1.
]
Lemma 4. Let v= (v, " -, v,) and w =
(wy,***, w,) € C". Then
ol vw, — v, P <2 vFllwlP.
Lemma 5. Let ¢, (= 1,2) and d, i = 1,2,
3,4) be functions on D. If we set X; = c,a; + ¢,b;
and Y; = d,a; + d,b; + dsa/ + d,b/ (1 <7< n),
then
Zul XY, — VX, i
<20( ¢, P+ e, d, P+ 1d, [

+ (dy P+ 1d, A a P+ 1o 15}
Proof. By the Binet-Cauchy formula we
have
X,;Y, — Y, X, = determinant of

a, a,
{c1 ¢, O 0} b, b,
d, d, d; d, aj a;

by b/

By Schwarz’s inequality and Lemma 3 and Lem-
ma 4 we obtain
Sul XY, - VX P<5%,{cd,— cd, |°
| a,b, — ab, | + | c,d, |’ ;0" — aza) | *
+ led, [Pl @b, — ab/ P+ | cody '] b0 — bya) |
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+ le,d, 1] ;0 — 6,8 1 < 20¢( ¢, I* + | ¢, 1)
(d, " +1d, 1) + e, *ldy Il a |

+le Fla, Pl P +1cl*ld *la I

+ el ld, P 1o P O

6. We will give estimates of || u ||2, | v ||2, | 0w

I and | 9o |.

Proposition 3.
that

There exists a constant C such

0l ulf, 6"l vlF, 6"l oull and
a*lavli<cdalF+lo I+ 1B .
Proof. Let w= (la’ P+ & P+ | B H"

From (6), it follows that
ox; = {(a’, @) + (b, b)}a, — {(a’, b) + (b, @) B
+ (b, BYb; + (lalf + 16 1Pay
— {(a, b) + (b, @) B}b;.
Set X; = x; and Y; = Ox; in Lemma 4, then ¢, =
d, = (alf + 161", ¢, =d,=— (@, b + (b,
a)B,d,= (@, a) + (b',b) and d,=— (a,
b) + ', a)B+ (b, a)B’.
Since |¢,|<2,]¢,]1<2,]|d,| £2w,]|d,| < 3w,
|d3| < 2 and |d4| < 2, we obtain
2l z0x, — x,0x;1* < const. »”.
Similarly we have
>l ¥,0y, — y,0y;1° < const. o’
By (9) and Schwarz’s inequality, we have
lal? = 30l u, | < 2072, Al x,0x, — x,0z; I°
+ | 9,0y, — y,0y, |} < const. 6w’
By | 0o |2 < const. ®° and Lemma 4, direct com-
putations give

” ou "2 = ij | a“;‘k |2

< @2+ 05 =, 00| 2,02, — x,0x, |

+ | 0o 1* 9,0y, — y.0y,* + | 8zx,0x, — dx,0x, |’

+ | 8y;0y, — Oy, 0y, 1" + | 2,00x, — x,00z; |°

+ | yjaéyk - ykaéyj |2 + | yjayk - ykayj |2 | B’ |2}

< const. 8w,

Similarly, estimates of |o|° and [dv|f are

obtained. O
7. Proof of Theorem 2. If we set

w=lal+ |6l +|B,
then we have dw=4(a’ P+ & | +|B .
If we apply Lemma 2 to the function w, then

(fj,;l ¢ |2 (Aw) log_l_%l_ dxdy>l/2

|2
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< Q@Qrelwl)?lel, < @mre-3)"2

By Proposition 3 and Lemma 1, Theorem 2
holds. O]

8. Proof of corollary. Let m be the projec-
tion from R to D. The function F = X, | £, |* is
continuous on R, so that its sum converges uni-
formly on any compact subset of R by Dini’s
Theorem. Let {D,} be a sequence of discs such
that D, C D,,,, L’f D, = D and there exists no

branch point of R above 0D,. For each n = 2/9,
there exists an N() such that =, yem|f |
< n? on the two-sheeted disc 7 '(D,), where
we have X,y | ;17 = (6/2)°. We assume that
Nm) < N(n +1). By Theorem 1, there exists
{g,;)j<now functions in H”(z~'(D,)) such that
S8 =1 and Z,| g, < C(6/2)° We set
g, = 0 if j > N(n). By Cantor’s diagonal pro-
cess, we may assume that, for any j, the sequence
{g,;} converges uniformly on any compact subset
of R. Let g; be the limit of {g,}. For m =
N(k) and n = k, we have

| Ziciamfign — 11 = | I Z!’SN(n)fjgnil

. <2 ZM.(,Q | fig, | < (2/K)C(8/2)

on 7w (D,). Letting #— © and then k— ©°, we

have 22,f,g; = 1. U]
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