On the Rank of the Elliptic Curve $y^{2}=x^{3}-2379^{2} x$

By Fidel R. NEMENZO
Department of Mathematics, Sophia University
(Communicated by Shokichi IyanagA, M. J. A., Nov. 12, 1996)

Let n be a positive square-free integer and r_{n} be the rank of the elliptic curve $C: y^{2}=x^{3}-$ $n^{2} x$. When $n=2379$, the zero at $s=1$ of the Hasse-Weil L-function of C has order 2, which is conjectured by Birch and Swinnerton-Dyer to be the rank r_{2379}. We will use Tate's method to show that r_{2379} is effectively equal to 2 .

We write $x \sim y$ whenever $x / y=u^{2}$ for some rational number \boldsymbol{u}. Consider two types of Diophantine equations:
(1) $d X^{4}+\left(4 n^{2} / d\right) Y^{4}=Z^{2} ; d \mid 4 n^{2} ; d+1$
(2) $d X^{4}-\left(n^{2} / d\right) Y^{4}=Z^{2} ; d \mid n^{2} ; d+ \pm 1, \pm n$

Now let $D=\left(d_{1}, d_{2}, \ldots, d_{\mu}\right\}$ be the set of distinct (i.e. inequivalent pairwise) d's such that (1) is solvable in integers X, Y, and Z with (X, $\left.\left(4 n^{2} / d\right) Y Z\right)=(Y, d X Z)=1$ and $D^{\prime}=\left\{d_{\mu+1}\right.$, $\left.\ldots, d_{\mu+\nu}\right\}$ be the set of d's such that (2) is solvable in integers X, Y, and Z with $\left(X,\left(n^{2} / d\right) Y Z\right)$ $=(Y, d X Z)=1$. Then $2^{r_{n}+2}=(1+\mu)(4+\nu)$. See Silverman and Tate [5].

Let $n=2379=3 \cdot 13 \cdot 61$. We first consider the Diophantine equations of the first type and determine μ. We have

$$
\begin{aligned}
& 13(6)^{4}+2^{2} \cdot 3^{2} \cdot 13 \cdot 61^{2}(1)^{4}=(1326)^{2} \text { and } \\
& 61(2)^{4}+2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 61(1)^{4}=(610)^{2}
\end{aligned}
$$

so $d=13, d=61$ and $d=13 \cdot 61$ are in D. The equations (1) for $d=2,3$ and 6 can be shown to have no solutions by, say, considering them modulo 3 . Hence $\mu=3$.

In order to show that $r_{2379}=2$, it will suffice to show that the following equations do not have solutions under the conditions stated above.

$$
\begin{array}{ll}
\text { (3) } & 3 \cdot 13 X^{4}-3 \cdot 13 \cdot 61^{2} Y^{4}=-Z^{2} \\
\text { (4) } & 3 \cdot 13 \cdot 61^{2} X^{4}-3 \cdot 13 Y^{4}=-Z^{2} \\
\text { (5) } & 13 \cdot 61 X^{4}-3^{2} \cdot 13 \cdot 61 Y^{4}=Z^{2} \\
\text { (6) } & 13 \cdot 61 \cdot 3^{2} X^{4}-13 \cdot 61 Y^{4}=Z^{2} \\
\text { (7) } & 3 \cdot 61 X^{4}-3 \cdot 61 \cdot 13^{2} Y^{4}=-Z^{2} \\
\text { (8) } & 3 \cdot 61 \cdot 13^{2} X^{4}-3 \cdot 61 Y^{4}=-Z^{2}
\end{array}
$$

Lemma. Let a be odd, b even, $c=a^{2}-b^{2}$ square-free, and x odd, y even, $(x, y)=1$ and $x^{2}-y^{2}=c z^{2}$. Then

$$
(a x+b y+c z)(a x-b y-c z)=c(y-b z)^{2}
$$

and

$$
(a x+b y+c z, a x-b y-c z)=2 e^{2}
$$

for some integer e, so that we can find integers c_{1}, c_{2}, u and v such that $a x=c_{1} u^{2}+c_{2} v^{2}$ and $c=$ $c_{1} c_{2}$.

Proof. See Wada [3].
Suppose (3) is solvable. Then for some integer W,

$$
\begin{aligned}
X^{4}-61^{2} Y^{4} & =-3 \cdot 13 W^{2} \text { or } \\
\left(X^{2}\right)^{2}-\left(61 Y^{2}\right)^{2} & =\left(5^{2}-8^{2}\right) W^{2}
\end{aligned}
$$

Letting $x=X^{2}, y=61 Y^{2}, z=W^{2}, a=5$ and b $=8$, we see that $(x, y)=1$. If both x and y are odd, or if x is even and y odd, the two sides of the equation above will not be congruent modulo 16. Hence we can apply the lemma and get

$$
5 X^{2}=c_{1} u^{2}+c_{2} v^{2} \text { and } c_{1} c_{2}=-3 \cdot 13
$$

Since $(5 / 13)=-1$ and $(3 / 13)=1$, we have contradiction. Hence (3) is not solvable.

If (4) is solvable, then $(61 X)^{2}-\left(Y^{2}\right)^{2}=$ $\left(5^{2}-8^{2}\right) W^{2}$. Thus we have $5 \cdot 61 X^{2}=c_{1} u^{2}+$ $c_{2} v^{2}$ and $c_{1} c_{2}=-3 \cdot 13$. In modulo 13 , the right side of the equation is a square while left is not. Hence, (4) is not solvable.

If (5) has solutions X, Y and Z, then for some integer W,

$$
\begin{aligned}
\left(X^{2}\right)^{2}-\left(3 Y^{2}\right)^{2} & =13 \cdot 61 W^{2} \\
& =\left(37^{2}-24^{2}\right) W^{2}
\end{aligned}
$$

The two sides of the equation are not congruent modulo 16 unless X is odd and Y is even. Applying the lemma, we have

$$
\begin{aligned}
37 X^{2} & =c_{1} u^{2}+c_{2} v^{2} \text { and } \\
c_{1} c_{2} & =13 \cdot 61
\end{aligned}
$$

Since $(37 / 13)=-1$ and $(61 / 13)=1$, we have a contradiction, and hence (5) has no solution. Similarly, (6) has no solution.

Lastly, we show that (7) and (8) are not solvable. If (7) has solutions X, Y and Z, then for some integer W,

$$
\begin{aligned}
\left(X^{2}\right)^{2}-\left(13 Y^{2}\right)^{2} & =-3 \cdot 61 W^{2} \\
& =\left(29^{2}-32^{2}\right) W^{2}
\end{aligned}
$$

X is odd and Y is even, so we can apply the lem-
ma once more to get

$$
\begin{aligned}
29 X^{2} & =c_{1} u^{2}+c_{2} v^{2} \text { and } \\
c_{1} c_{2} & =-3 \cdot 61
\end{aligned}
$$

Now $(29 / 61)=-1$ but $(3 / 61)=1$, a contradiction. Hence (7) has no solution. Similarly, (8) has no solution. This shows that $\nu=0$ and r_{2379} $=2$.

References

[1] K. Noda and H. Wada: All congruent numbers less than 10000. Proc. Japan Acad., 69A, 175-

178 (1993).
[2] H. Wada and M. Taira: Computations of the rank of the elliptic curve $y^{2}=x^{3}-n^{2} x$. Proc. Japan Acad. , 70A, 154-157 (1994).
[3] H. Wada: On the rank of the elliptic curve $y^{2}=$ $x^{3}-1513^{2} x$. Proc. Japan Acad., 72A, 34-35 (1996).
[4] J. H. Silverman: The Arithmetic of Elliptic Curves. GTM106, Springer-Verlag (1986).
[5] J. H. Silverman and J. Tate: Rational Points on Elliptic Curves. Springer-Verlag (1992).

