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§1. Introduction. In our previous papers
[56] and [6], we considered the following conjec-
ture when (O, q,7”) = (2, 2,3) and (2, 2, 5),
respectively.

Conjecture. Ifa, b, c, p, q, 7 are fixed posi-
tive integers satisfying a® + b° = ¢ with p, q, 7
> 2 and (a, b) = 1, then the Diophantine equation
(1) a*+b'=c
has only the positive integral solution (x, y, 2) =
®,q, 7.

In this paper, we consider the above Conjec-
ture when p = 2, ¢ = 2 and 7 is an odd prime.
Using known results about the Thue equation
and the Baker theory, we show that if ¢ or 7 is
sufficiently large, then it holds for a, b, ¢ satis-
fying certain conditions as specified in Theorem
in §2.

§2. Theorem. We first prepare some lem-
mas.

In the same way as in the proof of Lemma 1
in [5], we obtain the following:

Lemma 1. The integral solutions of the equa-
tion a° + b° = ¢” with (a, b)) = 1 and 7 odd prime

are given by
(r—=1)/2

a=tu 3 (= 1)j< r'> ur-(znx)vz;"
j=0 2j
-4 (r-zl:)/z (_ 1)]< 7
b=%v & 2j+1
c=u’+ vz, wheve #, v are integers such that
(#, v) =1 and v # v(mod 2).
In the following, we consider the case u =
m, v=1;1ie.
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m is even.
Lemma 2. Let ¥ be an odd prime. Let a, b, ¢

a
be positive integers satisfying (2) and (3) = -1,

*
where (?) denotes the Jacobi symbol. If the

Diophantine equation (1) has positive integral solu-
tions (x, y, 2), then X and y are even.
c

14
Proof. Since a’ + b* = ¢, we have () =
b

(%)r =1, so (%) = (—;—,) =1 with a = ma’

Since (%) = — 1, x must be even from (1).

If = 1(mod 4), then we have b= 1(mod 8).

m
Thus we have <7> = 1. In fact, putting m = 2°¢

w2 o, ()= () () - () -

(%) = (—1—) = 1. Hence we have — 1= (%) =

<%> (%) - (%) = (ai) which implies that y

is even from (1).

If = — 1(mod4), then we have b= — 1
(mod4). Since x =2, we have (—1)'=
1(mod 4) from (1). Thus y is even.

Remark. We checked that the assumption

(%) = — 1 holds for a, b, ¢ in (2) when 7=

3,5,7 respectively (cf. Lemma 2 in [5] and Lemma
2 in [6]).

In the same way as in the proof of Lemma 3
in [6], we obtain the following:

Lemma 3. Let 7 be an odd prime, and let a,
b, ¢ be positive integers satisfying a+bv=c
and (a, b) = 1. Suppose that there is an odd prime
I such that ab = 0(mod[) and ¢ = 0(mod 7),
where e is the order of ¢ modulo l. If the Diophan-
tine equation (1) has positive integral solutions

(x, ¥y, 2) under these conditions, then we have
z= 0(mod ).

We use the following known Propositions
1,2,3,4 to show Lemma 4.

Proposition 1 (Lebesgue [3]). The Diophan-
tine equation P+1= y" has no positive integral
solutions x, Y, n with n = 2.

Proposition 2 (Le [2]). Let X, Y be non-zero
integers such that (X,Y) =1 and 2| XY. Let
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e=X+YVy—1lamdée=X—-YVy—1.If

=&
c— &

for some integer n, then n < 8-10°.

Proposition 3 (Bugeaud and Gyory [1]). Let
f(x, y) be an irreducible binary form with integer
coefficients and degree d = 3. Let m be a wnon-zero
integer with |m| < M (= e). All integral solu-
tions X, Y of the Thue equation

fx,y) =m
satisfy
logmax (| z|, |y]) < 3349 18G+D prad—2
(log D* log M,
where H 1is the maximum absolute value of the
coefficients of f(x, y).

Proposition 4 ([4]). For any positive integer n

and any complex numbers &, 3, we have

an+Bn — [J:éf)] (— 1)][;1] (a_'_ﬁ)n-zj(aﬁ)i,

where [n /2] is the greatest integer not greater than

n/2 and
is an integer (0 < j

-
J
< [n/2]).

Lemma 4. Let 7 be an odd prime, and let a,
b, ¢ be positive integers sattsfymg (2). Let b be a
prime power. If r > 8+ 10° or log ¢ > 10", then
the Diophantine equation

a4 b = 7

has only the positive integral solution (X, Y, Z)
= (1,1,1).

Proof.
have

m—j7j—D'n
(n—2p)!7!

It follows from Lemma 1 that we
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We first consider (3). Then we have
Ww+1= cZ,
which has only the solution Z = 1 from Proposi-
tion 1. Thus since ¢ = m’ + 1, we have u =
tmsoY=1, X=1.

We next consider (4). The second equation
in (4) has no non-trivial solutions if » = 3, 5 (cf.
Lemma 5 in [5] and Lemma 5 in [6]). Thus we
may suppose 7 = 7.

Let e=u+ovy—1 and é=u—vy—1.
Then we have from (4)
g —&
= 4+
(5) -z - t1L

Therefore it follows from Proposition 2 that
r < 8-10°

We next show that log ¢ < 10
(r— 1)/2 [

0“, Let f(X, Y)
] X™P?7y’ By Proposition 4,

f(X, Y) € Z[X, Y] is a homogeneous polyno-
mial of degree (r — 1)/2 = 3. Since

[(r)] =1L [(r—r1)/2] ="’| []r]

i=12,..., r—3)/2,
we see from Eisenstein's theorem that f(X, Y) is
irreducible over Q. By (5), we have f(— 40°,
¢©)=+1, sincee—&=2vy—1 and ec = u”
+ v* = ¢®. Note that the height H of f(X, Y)

[;] < 27" Hence it

satisfies "H = max

0<i<(r-1/2
follows from Proposition 3 that
log ¢ < log max (4v°, ¢%)
< 33(d+9)d18(d+1) (27—1)211—2(10

with d = (r — 1)/2.
Substituting the upper bound of 7 into the above,
we obtain log ¢ < 1010“, as desired.

Combining Lemmas 2,3 with Lemma 4, we
obtain the following:

Theorem. Let 7 be an odd prime, and let a,

g 21’—1) 2d-1

a
b, ¢ be positive integers satisfying (2) and (.b—> =

— 1. Let b be a prime power. Suppose that there is
an odd prime 1 such that ab = 0 (mod [) and e =
0 (mod 7), where e is the ?rder of ¢ modulo 1. If
r>8- 10 or log ¢ > 10", then the Diophantine
equation @ + b’ = ¢ has only the positive integral
solution (x, y, 2) = (2,2, 7).
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