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1. Introduction. In our previous papers Diophantine equation (1) has positive integral solu-

[5] and [6], we considered the following conjec- tions (x, y, z), then x and y are even.

b r (C_ rture when (p q, r)- (2 2 3)and (2 2, 5)
Proof Since a + c, we have

respectively. \o/

(-7)
r (-)Conjecture. If a, b, c, p, q, r are fixed posi- 1 so 1 with a ma’.

tive integers satisfying a + b c with p, q, r
>_2and (a, b)- 1, then the Diophantine equation Since (): --1, x must be even from (1).
(1) a + c

If r -= 1 (rnod 4), then we have b -= l(rnod 8).
has only the positive integral solution (x, y, z)

Thus we have (--)= 1. In fact, putting rnr).q, 2t
In this paper, we consider the above Conjec- (_) (_) ()ture whenp--2, q=2 and r is an odd prime. (s_> land t is odd), (--)=

Using known results about the Thue equation
and the Baker theory, we show that if c or r is (--bt)- (-)--1. Hence we have --1--()
sufficiently large, then it holds for a, b, c satis-
fying certain conditions as specified in Theorem (-) (-)- (-)= /h\,u/--;,), which implies thaty
in 2.

2. Theorem. We first prepare some lem-
mas.

In the same way as in the proof of Lemma 1
in [5], we obtain the following:

is even from (1).
If r =--- l(mod 4), then we have b 1

(rood4). Since x-> 2, we have (-- 1) y--

1 (mod, 4) from (1). Thus y is even.
Remark. We checked that the assumption

Lemma 1. The integral solutions of the equa-
tion a + c with (a, b) 1 and r odd prime 1 holds for a, b, c in (2) when r=
are given by

a= --+ (-- 1) r _(/
=o 2j

v

(r-1)/2

b -+ v Z (-- 1) r r-(2j+l) 2j

j=o 2j + 1
U V

2
c--u + v, where u, v are integers such that
(u, v) 1 and u v(mod 2).

In the following, we consider the case u
m, v 1’ i.e.

(r-)/2 ()(2) a m Z (_ 1)j r r-(2j+l)

=o 2j
rn

(r--1)/2

b- (_ 1) r r-(21+1)

=o 2j+ 1
m

and

3,5,7 respectively (cf. Lemma 2 in [5] and Lemma
2 in [61).

In the same way as in the proof of Lemma 3
in [6], we obtain the following:

Lemma 3. Let r be an odd prime, and let a,
bb, c be positive integers satisfying a + c

and (a, b) 1. Suppose that there is an odd prime
such that ab= 0(modl) and e= 0(rnodr),

where e is the order of c modulo l. If the Diophan-
tine equation (1) has positive integral solutions
(x y, z) under these conditions, then we have

c=m +1 z--0(rnodr).
We use the following known Propositions

1,2,3,4 to show Lemma 4.
m is even.

Proposition 1 (Lebesgue [3]). The Diophan-
Lemma 2. Let r be an odd prime. Let a, b, c yntine equation x + 1 has no positive integral

be positive integers satisfying (2)and () 1, solutions x, y, n withn 2.

(:__) Proposition 2 (Le [2]). Let X, Y be non-zero
where denotes the Jacobi symbol. If the integers such that (X, Y)= 1 and 21XY. Let
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X+ Yv/- 1 andg X- Yv/- 1. If

_g
for some integer n, then n < 8" 106.

Proposition 3 (Bugeaud and Gy6ry [1]). Let
f(x, y) be an irreducible binary form with integer

coefficients and degree d >- 3. Let m be a non-zero
integer with Ira[ <_ M (>_ e). All integral solu-
tions x, y of the Thue equation

f(x, y) m
satisfy

log max (I x 1, Y 1) < 3a(a+9>dlS(a+l)H2d-2
(log e-log M,

where H is the maximum absolute value of the

coefficients off (x, y).
Proposition 4 ([4]). For any positive integer n

and any complex numbers a, fl, we have

a += 2 (-1 t (a+fl) (a),
j=O j

where [n /2] is the greatest integer not greater than
n/2 and

[.]j (n-- 2j)[j[ isaninteger(O Nj

In/2]).
Lemma 4. Let r be an odd prime, and let a,

b, c be positive integers satisfying (2). Let b be a

prime power. If r > 8 10 or log c > 10*, then
the Diophantine equation

b2Y rZ
a :c

has only the positive integral solution (X, Y,
(,,).
Proof It follows from Lemma 1 that we

have
x <r-)/2 ()

/=o 2j
v

r-,,i ( )br: v (_ 1) r ur-<2j+l)v2j,
=o 2j + 1

z 2c u + v, where (u, v) 1, u is even and v
is odd, since b is odd.

(r- 1)/2

Since b is a prime power and v,
j=O

(__1)( r ) r-(+, )2j+ 1 " V ,weseethat

(r-1)/2 ( )(3) v= + 1, E (_ 1) r -(v+1) v
=o 2j+ 1

u v

br

or

(4) v- + b Y E (_ 1) r r-(2j+l) 2j

=o 2j+l
u v

We first consider (3). Then we have
2 Zu +l=c

which has only the solution Z i from Proposi-
tion 1. Thus since c--rn + 1, we have u--
+m, so Y= 1, X= 1.

We next consider (4). The second equation
in (4) has no non-trivial solutions if r 3, 5 (cf.
Lemma 5 in [5] and Lemma 5 in [6]). Thus we

may suppose r _> 7.
Let e u+ vv/- 1 and g= u-- vv/- 1

Then we have from (4)
r

(5) -- =+1

Therefore it follows from Proposition 2 that
r< 8"10.

We next show that log c < 10*. Let f(X, Y)
(r-l)/2

E X (r-1)/a-j Y/. By Proposition 4,
j=O

f(X, Y) Z[X, Y] is a homogeneous polyno-
mial of degree (r- 1)/2 --> 3. Since

[r]=l[ r ] I[r]0 (r-- 1)/2 r, r
j

j 1,2,..., (r-- 3)/2,
we see from Eisenstein’s theorem that f(X, Y) is

irreducible over Q. By (5), we have f(--4v,
c ---+ 1, since e-- g= 2vv/- 1 and ee u

Z+ v c. Note that the height H of f(X, Y)

satisfies "H max < Hence it
0j (r-l)/2 j

follows from Proposition 3 that
log c < log max(4v2, cz)

< 33(a+9)dlS(a+x)(2r-1)2a-a(log 2r-1) 2a-1

with d (r- 1)/2.
Substituting the upper bound of r into the above,
we obtain log c < 10", as desired.

Combining Lemmas 2,3 with Lemma 4, we
obtain the following:

Theorem. Let r be an odd prime, and let a,

b, c be positive integers satisfying (2)and ()
1. Let b be a prime power. Suppose that there is

an odd prime l such that ab 0 (mod l) and e =-
0 (mod r), where e is the order of c modulo 1. If
r>8 106

or log c > 101, then the Diophantine
equation a + bv c has only the positive integral
solution (x, , z) (2,2, r).
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