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0. Introduction. In a recent interesting i.e. the space of f Le(R2) with fx,f2
paper [1] L.C. Evans and S. Miller established L2(R2).
the estimate of local Hardy space norm of gra-
dients Cx,:

’)"1

provided that
(0.2) A-- co

_
0 in Re.

Here is in Co (R ) and the constants C
and R depends only on ;hl is a local Hardy
space defined in {}1 and B(x, R)denotes the

1. Definition and main theorem. We be-
gin with definition of local Hardy space as in [1].

Definition 1.1. Let be in C(Rn) with

B(0,1) and f,,ridx 1. For a func-supp

tion f in Loc(Rn), f** is defined by

(1.1) f**(x) sup r f(y) dy
0<r<l

The local Hardy space toc is defined by
closed ball of radius R centered at x Re. (1.2) :loc(Rn)= {fLoc(R If Loc(Rn)}.
(Another proof based on harmonic analysis is We recall the normed local Hardy space h
given by Semmes [2].) defined by

This estimate is useful in proving the exist- (1.3) hl(Rn) {f L(Rn) lf ** L(Rn)}
ence of weak solutions for the initial value prob- with the norm
lem of the two-dimensional Euler equation when f llh’<R")- IIf** ]]LI(R-)
the vorticity of the initial value is nonnegative Definition 1.2. For a function f in Co (Re),
measure ([1] and Delort [3]). The assumption co > we define the operator (-- A) -1

by
0 in (0.2) is essential for the estimate (0.1)’ in

_
1 {"

fact, Evans and Maller [1] gave a counterexample
(1.4) (--A) f(x) =--JR’.f(Y)lgl x--Yl dy.

for (0.1) when the condition co > 0 is violated.
However, in their example the set where co is form
nonnegative may be complicated.

In this paper we give another counterexam-
ple for (0.1) even when co is odd in the second
variable x. i.e.O.)(Xl, Xe) co(Xl, Xe) and

Theorem 1.3. Let T and S be the spaces of

T {co Co (Re) lco(x, xe) - 0 for

x > O, w(x, x) W(Xl, -x)},
S {( A) -1 oo oo T}.

Then there exists a sequence {S}o<s< in S
co(x, xe) > 0 for x.

_
0. This suggests that it is such that

difficult to extend weak solutions for the sup IlcSllH(R.)< oo
0<e<linitial-boundary value problem of the Euler

and
equation when the domain is a half space R+ (1.5) liml[(:)e_ (:.)e} ][h(Re)= oo
even if initial value is nonnegative in Re+. 0

To get our counterexample we construct a where e C0 (Re), 0 - < 1, IB(0,1/S)
sequence of form (x)= de(x/s). A key 1 and supp c B(0,1/2).
observation is the existence of function that
satisfies

with A- co, where co Co (R ) is odd in
the second variable xe and co

_
0 in R+, and

d2 HI(Re) HI(Re) denotes the Sobolev space,

2. Proof of theorem. At first, we show a
fundamental estimate in normed local Hardy
space; this is an extension of a result to Evans
and MiJller [1].

Lemma 2.1. Assume that f is in L(R"),

f f(x)dx C 4= O. Let f(x)= _l_._f().and
R
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(2.1) lim
o

for a function in Co (Rn) with 0 1,
[B<O,/) 1, and supp B(0,1/4).

Proof L-estimate is easily obtained by
scaling variables. To show the estimate (2.1),
assume that the function in (1.1) satisfies
0 V 1 and [B(0,1/2) 1. Now we estimate
the function (eft)**
(2.2) (el )** (x)

sup <,x-y)r (Y)f (y)dyl
0<r<

0<r<l r r (ez)f(z)dz

Now take a parameter R > 0, and let r 4
Ix [. Then
(2.3) (el*)** (x)

1 ez

4E[x[n I(o,(lz)(s)f()dl
1

4 [xl
I, I for eR <ix I< 1/4.

We show that lim**o I IIv<B<O,.,>> 0 and

lim**o L II.<B<O,.,,,- o complete the proof.
Firstly, we estimate the term I"
I(x) 1 fn If(z) dz

F(R)

(4eR) n XBO,R> (4tR) n

with F(R)

Since F(R) is continuous, nonincreasing, and
limR_F(R)- O, for sufficiently small t, there
exists R R(e) such that

(2.4)
{F(R) } 2/

R"
By (2.4), we get

{F(R)}/
(2.5) I: (x) 0 as * 0

4
and get lim, ,o I II.<<o,,,> o.

Secondly, we estimate the term I. As
x ,z xl tR 1
41xl ,ll +41xl ’I12 (ez)f (z) dz(2.6) I 4lzl

4n[xl n <O,R)f(z)dz for sR N Ixl 1/4.

for eR < 1/8.

Now let t 0. For tR {F(R)}/zn 0 by
(2.4),

(2.7) lim I 4n in
f (z) dz

c,
for 0

_
Ixl - 1/4.

1
Since is not in Ll(Rn), we get a

Ixl
conclusion. []

Next lemma is important to show Lemma 2.3
which is the key to show Theorem 1.3:

Lemma 2.2. For any function b in S, there
exists a constant C depending only on such that

C
<2.8) I<x>l 1+ Ixl

C

l+lxl’
for x R.

Proof If is in S, then there exists a func-
tion w in T such that

(2.10) (z) 2 ()lglz--ldg’
Notice that is in C(R), so there is a

constant R R(m) such that supm B(0, R).
Since is odd in , we get

w(y) log lx- y ldy(2.11) $(x)

w(y) log
[x

2 +(o,) x dy,

1

_
x y

w(y)
iz
dy(2.12) Cx(X)= 2u _.(o,) [x--y

2x y(x- y)
w(y)

-(o,) Ix Ilx
du,

1 x y
w(y) dy(2 13) Cx(X) 2 (o,) [x--y

1
(

,(0,R)

where B+(0, N) denotes B(0, R) R and
(g,- ). Now we show that and is
bounded in B(O, 2R) and that there exists a con-
stant C such that
(.4 (z c lz -,

ICx,(X) Clxl-for Ix[ 2R.
The boundedness of and on B(0,2R) is

obtained by the fact that log lx and Ix ]- are
in Lo(R)

(25) I(x) lSUpll( Iog[x-ldu
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C J(x,)I log y dy

< Cf [log[ylldy
"B(0,3R)

Co),R < 00,

(2.16) [x,(X) sup w[ f 1
2 (O,R[x--yldy

c u I-ldu
(0,3R)

C, <
for x I 2R. (Notice that yl S Ix- y + Ixl

3R.)
Now we show (2.14) to complete the proof.

We may assume x 0 to estimate
is odd in x. By this assumption, we get the fol-
lowing inequality:

(2 17) 1 g
x Y[ Ix y[ +

-Ix-ul’ Ix-yl
2R 4R

for xl 2R and Y[ N R. The inequality
(2.17) leads the estimate of
(2.18) (x)

51g(1

(N log 1

z 2 II,w, I -.
Notice that the inequality

Izllz_l -<lx-yl
holds for xla 2R, yl - R. This inequality
leads the estimate of xj"
(2.19)
’2x___AI l(g) gl

dg

16R w [

(2.20)

I(y) x yil x" 1 dy
+(0,R)

8R I1

Combining the estimate (2.15), (2.16), (2.18),
(2.19), and (2.20) leads the conclusion (2.8) and
(2.9).

Now we are ready to show the key lemma.

Lemma 2.3. There exists a function in S
such that

(2.21) . {xl(X)} dx =/= fR. {x-(x)} dx.

Proof. Assume that the conclusion is not true,
i.e.

(2.22) z {x(x)} dx z {xz(x)}2 dx
for any in S. Let is in S, and let (x)
(xl- h, xe). Then the function Ch and +
are in S. In fact, there exists a function w in T
such that A) -1w, and we can write
( A) -w and + (-- A) (w+ w),
where w(x) w(x h, x2). It is obvious that

h hw andw+w are in T.
By the assumption (2.22), we get

(2.23) {x(X)} z dx {x2(X)} dx,

fR { h)xl
(X) } dx fR { h()x,(X)) dx,

Combining the equalities (2.23), we get

(2.24) f ,(x) (")x,(x)dx

fR Cx(X) (")x(x)dx.
Now we integrate the equality (2.24) by h"

(2.25) 2: fR X(X)(Oh)x(X)dx

Cx, (x) ()x, (x) dx.

Notice that we can change the order of in-
tegration by the estimate (2.9). Firstly, we com-
pute the left term of (2.25):

(2.26) Cx (x) (x)dx dh

Cx, (X) (h, x2) dx

0.
The equality is obvious by the estimate

(2.8). Secondly, we compute the right term of
(2.25)"

dx
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>0.
The positivity of integrals is shown by com-

puting the form of Cz.. Notice that Cx. is con-
tinuous, so it is sufficient to check that d2x2(xl, O)
is not zero. By (2.13), we can write bx2 as

o(y)(2.28) Cx.(x)
/(o,)

Y2 {(x2 Y2)(22 -[- Y2) (xi YI)2} dy

where o) is a function in T. Putting xz- 0 in

(2.28) leads

(2.29) Cx.(xl, 0)
1 f co(y)
7[" O,R

dy.
(X y) + Y

Since co and the integral kernel are positive
in B+(O, R), x.(Xl., 0) is always nonzero. The
results of computation (2.26) and (2.27) leads a
contradiction, and we get a conclusion of the lem-
ma. [

Proof of Theorem 1.3. Let the function in
S that satisfies (2.21). Let CS(x) (x/s).

Then
(()x (x) } (()x (x) }

1 ((xx) (x)} (sx__)
and Lemma 2.1 is appliable. (Notice that b2xl-
qb2x, is in L(R) the estimate (2.9) leads this
fact.)
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