Algorithms for b-Functions, Induced Systems, and Algebraic Local Cohomology of D-Modules

By Toshinori OAKU
Department of Mathematical Sciences, Yokohama City University
(Communicated by Kiyosi ITÔ, M. J. A., Oct. 14, 1996)

1. Introduction. Let K be an algebraically closed field of characteristic zero and let X be a Zariski open set of K^{n} with a positive integer n. We fix a coordinate system $x=\left(x_{1}, \ldots, x_{n}\right)$ of X and write $\partial=\left(\partial_{1}, \ldots, \partial_{n}\right)$ with $\partial_{i}:=\partial / \partial x_{i}$. We denote by \mathscr{D}_{X} the sheaf of algebraic differential operators on X (cf. [2], [3]).

We assume that (a presentation of) a coherent left $\mathscr{D}_{X^{-}}$module \mathcal{M} is given. Let u be a section of \mathcal{M} and let $f=f(x)$ be an arbitrary polynomial of n variables. Let s be an indeterminate. If \mathcal{M} is holonomic, then for each point p of $Y:=\{x \in X \mid f(x)=0\}$, there exist a germ $P(x, \partial, s)$ of $\mathscr{D}_{X}[s]$ at p and a polynomial $b(s) \in K[s]$ of one variable so that
(1.1) $\quad P(x, \partial, s)\left(f^{s+1} u\right)=b(s) f^{s} u$
holds (cf. [11]). More precisely, (1.1) means that there exists a nonnegative integer m so that

$$
Q:=f^{m-s}(b(s)-P(x, \partial, s) f) f^{s} \in \mathscr{D}_{X}[s]
$$

satisfies $Q u=0$ in $\mathcal{M}[s]:=K[s] \otimes_{K} \mathcal{M}$. A monic polynomial $b(s)$ of the least degree that satisfies (1.1) is called the (generalized) b-function for f and \boldsymbol{u}. When \mathcal{M} coincides with the sheaf \mathscr{O}_{X} of regular functions and $u=1$, we get the classical b-function (or the Bernstein-Sato polynomial) of f. Algorithms for computing the Bernstein-Sato polynomial have been given by several authors ([21], [25], [4], [16]) but not for an arbitrary f.

One of the main purposes of the present paper is to give algorithms for computing the b function for u and f and for computing the algebraic local cohomology groups $\mathscr{H}_{[Y]}^{j}(\mathcal{M})(j=0,1)$ as left \mathscr{D}_{X}-modules (cf. [11] for the definition). The algorithm for the local cohomology groups needs some information on the b-function.

These algorithms are actually obtained as byproducts of the solution of more general problems as follows:

Let \mathcal{M} be a left coherent $\mathscr{D}_{K \times X^{\prime}}$-module. For the sake of simplicity, let us assume here that a
section u of \mathcal{M} generates \mathcal{M}. We identify X with the subset $\{(t, x) \in K \times X \mid t=0\}$ of $K \times X$. Then the b-function of u along X at $p \in X$ is a nonzero polynomial $b(s) \in K[s]$ of the least degree that satisfies

$$
\left(b\left(t \partial_{t}\right)+t P\left(t, x, t \partial_{t}, \partial\right)\right) u=0
$$

with a germ $P\left(t, x, t \partial_{t}, \partial\right)$ of $\mathscr{D}_{K \times X}$ at p, where we write $\partial_{t}:=\partial / \partial t . \mathcal{M}$ is called specializable along X at p if such $b(s)$ exists.

We first present an algorithm which computes $b(s)$, or determines that there is none, by using a kind of Gröbner basis for the Weyl algebra related to a filtration introduced by Kashiwara [12]. Such Gröbner bases were used in [18], [19], [20].

If \mathcal{M} is specializable, then its induced system to X is the complex of left \mathscr{D}_{X}-modules \mathscr{M}_{X}^{*} whose cohomology groups are coherent \mathscr{D}_{X}-modules. We also obtain an algorithm of computing the cohomology groups of \mathcal{M}_{X}^{*} by using an FW-Gröbner basis. These algorithms for the b-function and the induced system, combined with a viewpoint of Malgrange [17], provide algorithms for the b-function for a polynomial (and a section of a holonomic system), and for the algebraic local cohomology groups.

When K coincides with the field \boldsymbol{C} of complex numbers, we can consider the problems explained so far with \mathscr{D}_{X} replaced by the sheaf $\mathscr{D}_{X}^{\text {an }}$ of analytic differential operators. Then our algorithms yield correct solutions also in this analytic case if the left $\mathscr{D}_{X}^{\text {an }}$-module $\mathcal{M}^{\text {an }}$ in question is written in the form $\mathcal{M}^{\mathrm{an}}=\mathscr{D}_{X}^{\mathrm{an}} \otimes_{\mathscr{D}_{X}} \mathcal{M}$ with a coherent \mathscr{D}_{X}-module \mathcal{M} whose presentation is given explicitly.

We have implemented the algorithms by using a computer algebra system Kan [24]. Details of the present paper will appear elsewhere.
2. Gröbner bases. Let us denote by A_{n} and by A_{n+1} the Weyl algebra on n variables x, and the Weyl algebra on $n+1$ variables (t, x) re-
spectively with coefficients in K. Let r be a positive integer and put $L:=\boldsymbol{N}^{2+2 n}=\boldsymbol{N} \times \boldsymbol{N} \times \boldsymbol{N}^{n}$ $\times \boldsymbol{N}^{n}$ with $\boldsymbol{N}:=\{0,1,2, \ldots\}$. An element P of $\left(A_{n+1}\right)^{r}$ is written in a finite sum

$$
\begin{equation*}
P=\sum_{i=1}^{\gamma} \sum_{(\mu, \nu, \alpha, \beta) \in L} a_{\mu \nu \alpha \beta i} t^{\mu} x^{\alpha} \partial_{t}^{\nu} \partial^{\beta} e_{i} \tag{2.1}
\end{equation*}
$$

with $a_{\mu \nu \alpha \beta i} \in K, e_{1}:=(1,0, \ldots, 0), \ldots, e_{r}:=$ $(0, \ldots, 0,1), x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \partial^{\beta}:=\partial_{1}^{\beta_{1}} \cdots$ $\partial_{n}^{\beta_{n}}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in$ \boldsymbol{N}^{n}.

For each integer m, we set
$F_{m}\left(\left(A_{n+1}\right)^{r}\right):=\left\{P=\sum_{i=1}^{r} \sum_{(\mu, \nu, \alpha, \beta) \in L} a_{\mu \nu \alpha \beta i} i^{\mu} x^{\alpha} \partial_{t}^{\nu} \partial^{\beta} e_{i} \mid\right.$ $a_{\mu \nu \alpha \beta i}=0$ if $\left.\nu-\mu>m\right\}$.
Then $\left\{F_{m}\left(\left(A_{n+1}\right)^{r}\right)\right\}_{m \in \boldsymbol{Z}}$ constitutes a filtration of $\left(A_{n+1}\right)^{r}$. For a nonzero element P of $\left(A_{n+1}\right)^{r}$, the F-order $\operatorname{ord}_{F}(P)$ of P is defined as the least $m \in$ \boldsymbol{Z} such that $P \in F_{m}\left(\left(A_{n+1}\right)^{r}\right)$.

Let \prec_{F} be a total order on $L \times\{1, \ldots, r\}$ which satisfies
(A-1) $\quad(\alpha, i) \prec_{F}(\beta, j)$ implies $(\alpha+\gamma, i) \prec_{F}$ $(\beta+\gamma, j)$ for any $\alpha, \beta, \gamma \in L$ and i, j $\in\{1, \ldots, r\} ;$
(A-2) if $\nu-\mu<\nu^{\prime}-\mu^{\prime}$, then ($\mu, \nu, \alpha, \beta, i$) $\prec_{F}\left(\mu^{\prime}, \nu^{\prime}, \alpha^{\prime}, \beta^{\prime}, j\right)$ for any $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ $\in \boldsymbol{N}^{n}, \mu, \nu, \mu^{\prime}, \nu^{\prime} \in \boldsymbol{N}$ and any $i, j \in$ $\{1, \ldots, r\}$;
(A-3) $\quad(\mu, \mu, \alpha, \beta, i) \succeq_{F}(0,0,0,0, i)$ for any $\mu \in \boldsymbol{N}, \alpha, \beta \in \boldsymbol{N}^{n}, i \in\{1, \ldots, r\}$.
Let P be a nonzero element of $\left(A_{n+1}\right)^{r}$ which is written in the form (2.1). Then the leading exponent $\operatorname{lexp}_{F}(P) \in L \times\{1, \ldots, r\}$ of P with respect to \prec_{F} is defined as the maximum element

$$
\max \left\{(\mu, \nu, \alpha, \beta, i) \mid a_{\mu \nu \alpha \beta i} \neq 0\right\}
$$

with respect to the order \prec_{F}. The set of leading exponents $E_{F}(N)$ of a subset N of $\left(A_{n+1}\right)^{r}$ is defined by

$$
E_{F}(N):=\left\{\operatorname{lexp}_{F}(P) \mid P \in N \backslash\{0\}\right\}
$$

Definition 2.1. A finite set \boldsymbol{G} of generators of a left A_{n+1}-submodule N of $\left(A_{n+1}\right)^{r}$ is called an FW-Gröbner basis of N if we have

$$
E_{F}(N)=\cup_{P \in G}\left(\operatorname{lexp}_{F}(P)+L\right)
$$

where we write

$$
(\alpha, i)+L=\{(\alpha+\beta, i) \mid \beta \in L\}
$$

for $\alpha \in L$ and $i \in\{1, \ldots, r\}$.
Since the order \prec_{F} is not a well-order, the Buchberger algorithm ([5], [9], [6], [22]) for computing Gröbner bases does not work directly. In order to bypass this difficulty to obtain an algorithm of computing FW-Gröbner bases, we use
the homogenization technique.
Definition 2.2. For $\lambda, \mu, \nu, \lambda^{\prime}, \mu^{\prime}, \nu^{\prime} \in \boldsymbol{N}$ and $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \boldsymbol{N}^{n}$, an order \prec_{H} on $L_{1} \times$ $\{1, \ldots, r\}$ with $L_{1}:=\boldsymbol{N} \times L$ is defined so that we have $(\lambda, \mu, \nu, \alpha, \beta, i) \prec_{H}\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \alpha^{\prime}, \beta^{\prime}\right.$, j) if and only if one of the following conditions holds:
(1) $\lambda<\lambda^{\prime}$;
(2) $\lambda=\lambda^{\prime},(\mu+l, \nu, \alpha, \beta, i) \prec_{F}\left(\mu^{\prime}+l^{\prime}, \nu^{\prime}, \alpha^{\prime}\right.$, β^{\prime}, j) with $l, l^{\prime} \in \boldsymbol{N}$ such that $\nu-\mu-l=$ $\nu^{\prime}-\mu^{\prime}-l^{\prime}$;
(3) $(\lambda, \nu, \alpha, \beta, i)=\left(\lambda^{\prime}, \nu^{\prime}, \alpha^{\prime}, \beta^{\prime}, j\right), \mu<\mu^{\prime}$ This definition is independent of the choice of l, l^{\prime} in view of the condition (A-1).

Lemma 2.3. (1) \prec_{H} is a well-order.
(2) If $\nu-\mu-\lambda=\nu^{\prime}-\mu^{\prime}-\lambda^{\prime}$, then (λ, μ, ν, $\alpha, \beta, i) \prec_{H}\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}, \alpha^{\prime}, \beta^{\prime}, j\right)$ if and only if $(\mu, \nu, \alpha, \beta, i) \prec_{F}\left(\mu^{\prime}, \nu^{\prime}, \alpha^{\prime}, \beta^{\prime}, j\right)$.
Definition 2.4. An element P of $\left(A_{n+1}\left[x_{0}\right]\right)^{r}$ of the form

$$
P=\sum_{i=1}^{\gamma} \sum_{\lambda, \mu, \nu, \alpha, \beta} a_{\lambda \mu \nu \alpha \beta i} x_{0}^{\lambda} t^{\mu} x^{\alpha} \partial_{t}^{\nu} \partial^{\beta} e_{i}
$$

is said to be F-homogeneous of order m if $a_{\lambda \mu \nu \alpha \beta i}$ $=0$ whenever $\nu-\mu-\lambda \neq m$.

Definition 2.5. For an element P of $\left(A_{n+1}\right)^{r}$ of the form (2.1), put $m:=\min \left\{\nu-\mu \mid a_{\mu \nu \alpha \beta i} \neq\right.$ 0 for some $\alpha, \beta \in \boldsymbol{N}^{n}$ and $i \in\{1, \ldots, r\}$. Then the F-homogenization $P^{h} \in\left(A_{n+1}\left[x_{0}\right]\right)^{r}$ of P is defined by

$$
P^{h}:=\sum_{i=1}^{r} \sum_{\mu, \nu, \alpha, \beta} a_{\mu \nu \alpha \beta i} x_{0}^{\nu-\mu-m} t^{\mu} x^{\alpha} \partial_{t}^{\nu} \partial^{\beta} e_{i} .
$$

P^{h} is F-homogeneous of order m.
Proposition 2.6. Let N be a left $A_{n+1}\left[x_{0}\right]-$ submodule of $\left(A_{n+1}\left[x_{0}\right]\right)^{r}$ generated by F-homogeneous operators. Then there exists an H-Gröbner basis (i.e. a Gröbner basis with respect to \prec_{H}) consisting of F-homogeneous operators. Moreover, such an H-Gröbner basis can be computed by the Buchberger algorithm.

Theorem 2.7. Let N be a left $A_{n+1}-s u b$ module of $\left(A_{n+1}\right)^{r}$ generated by $P_{1}, \ldots, P_{d} \in$ $\left(A_{n+1}\right)^{r}$. Let us denote by N^{h} the left $A_{n+1}\left[x_{0}\right]-$ submodule of $\left(A_{n+1}\left[x_{0}\right]\right)^{r}$ generated by $\left(P_{1}\right)^{n}, \ldots$, $\left(P_{d}\right)^{h}$. Let $\boldsymbol{G}=\left\{Q_{1}\left(x_{0}\right), \ldots, Q_{k}\left(x_{0}\right)\right\}$ be an H Gröbner basis of N^{h} consisting of F-homogeneous operators. Then $\boldsymbol{G}(1):=\left\{Q_{1}(1), \ldots, Q_{k}(1)\right\}$ is an $F W$-Gröbner basis of N.

Let us denote by $\left.\mathscr{D}_{K \times X}\right|_{X}$ the sheaf theoretic restriction of $\mathscr{D}_{K \times X}$ to $X=X \times\{0\}$. Then for a germ Q of $\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}$ at $p \in X$, there exist $P \in$
$\left(A_{n+1}\right)^{r}$ and $a(t, x) \in K[t, x]$ with $a(0, p) \neq 0$ so that $Q=a(t, x)^{-1} P$. For each integer m, we put

$$
\begin{gathered}
F_{m}\left(\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}\right)_{p}:=\left\{a^{-1} P \mid P \in F_{m}\left(\left(A_{n+1}\right)^{r}\right)\right. \\
a=a(t, x) \in K[t, x], a(0, p) \neq 0\}
\end{gathered}
$$

For a germ Q of $\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}$ at p, its F-order $\operatorname{ord}_{F}(Q)$ is defined as the minimum $m \in \boldsymbol{Z}$ so that $P \in F_{m}\left(\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}\right)$. Put $m:=\operatorname{ord}_{F}(Q)$ and let $a(t, x) \in K[t, x]$ and $P \in\left(A_{n+1}\right)^{r}$ be as above. Suppose that P is written in the form (2.1). Then the formal symbol $\bar{\sigma}(Q)$ of Q is defined by

$$
\begin{gathered}
\hat{\sigma}(Q)=\hat{\sigma}_{m}(Q):=a(0, x)^{-1} \sum_{i=1}^{r} \sum_{\nu-\mu=m} \\
a_{\mu \nu \alpha \beta i} t^{\mu} x^{\alpha} \partial_{t}^{\nu} \partial^{\beta} e_{i}
\end{gathered}
$$

Definition 2.8. Let P be a nonzero element of $\left(A_{n+1}\right)^{r}$ (resp. $\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}$) of F-order m. Then we define $\psi(P)(s) \in\left(A_{n}[s]\right)^{r}$ (resp. $\left.\left(\mathscr{D}_{X}[s]\right)^{r}\right)$, by

$$
\begin{gathered}
\hat{\sigma}_{0}\left(t^{m} P\right)=\phi(P)\left(t \partial_{t}\right) \text { if } m \geq 0 \\
\hat{\sigma}_{0}\left(\partial_{t}^{-m} P\right)=\phi(P)\left(t \partial_{t}\right) \text { if } m<0
\end{gathered}
$$

Theorem 2.9. We use the same notation as in Theorem 2.7. Let \mathcal{N} be the left $\left.\mathscr{D}_{K_{\times X}}\right|_{X^{-}}$ submodule of $\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}$ generated by N. Let $\psi(\mathcal{N})$ be the left $\mathscr{D}_{X}[s]-$ submodule of $\left(\mathscr{D}_{X}[s]\right)^{r}$ generated by the set $\left\{\phi(P)(s) \mid P \in \mathcal{N}, \operatorname{ord}_{F}(P)=0\right\}$. Then $\phi(\mathcal{N})$ is generated by $\phi\left(Q_{1}(1)\right)$, . . . , $\psi\left(Q_{k}(1)\right)$.
3. b-function of a D-module. Let \mathcal{M} be a left coherent $\left.\mathscr{D}_{K \times X}\right|_{X}$-module on X. We assume that a left A_{n+1}-submodule N of $\left(A_{n+1}\right)^{r}$ is given explicitly so that $\mathcal{M}=\left.\mathscr{D}_{K \times X}\right|_{X} \otimes_{A_{n+1}} M$ holds with $M:=\left(A_{n+1}\right)^{r} / N$. Set $\mathcal{N}:=\left.\mathscr{D}_{K \times X}\right|_{X} \otimes_{A_{n+1}}$ $N \subset\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}$. For each integer m, put

$$
F_{m}(\mathcal{N}):=\mathcal{N} \cap F_{m}\left(\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}\right)
$$

$$
F_{m}(\mathcal{M}):=F_{m}\left(\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}\right) / F_{m}(\mathcal{N})
$$

Then $\left\{F_{m}(\mathcal{M})\right\}_{m \in \boldsymbol{Z}}$ is a filtration of \mathcal{M} satisfying

$$
F_{k}\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right) F_{m}(\mathcal{M})=F_{k+m}(\mathcal{M})
$$

for any $k, m \in \boldsymbol{Z}$. The b-function $b(s, p) \in$ $K[s]$ of \mathcal{M} (with respect to the filtration $\left.\left\{F_{m}(\mathcal{M})\right\}\right)$ at $p \in X$ is the monic polynomial $b(s$, p) of s of the least degree, if any, that satisfies (3.1) $\quad b\left(t \partial_{t}, p\right)\left(F_{0}(\mathcal{M}) / F_{-1}(\mathcal{M})\right)_{p}=0$.

If such $b(s, p)$ exists, \mathcal{M} is called specializable along X at p. It is known that if \mathcal{M} is holonomic, then \mathcal{M} is specializable at any $p \in X$ ([13], [14]).

Let \boldsymbol{G} be an FW-Gröbner basis of N, which can be computed by the homogenization and the Buchberger algorithm with a set of generators as input (Theorem 2.7). Put $\psi(\boldsymbol{G}):=\{\psi(P) \mid P \in$
$\boldsymbol{G}\}$ and let $\psi(N)$ be the left $A_{n}[s]$-submodule of $\left(A_{n}[s]\right)^{r}$ generated by $\phi(\boldsymbol{G})$. Let \prec_{D} be a total order on $L_{0} \times\{1, \ldots . ., r\}$ with $L_{0}:=\boldsymbol{N}^{1+2 n}$ which satisfies (A-1) with L replaced by L_{0} and (A-4) $(\alpha, i) \succ_{D}(0, i)$ for any $\alpha \in L_{0} \backslash\{0\}$ and $i \in\{1, \ldots, r\}$;
(A-5) $|\beta|<\left|\beta^{\prime}\right|$ implies $(\mu, \alpha, \beta, i)<_{D}\left(\mu^{\prime}\right.$, $\alpha^{\prime}, \beta^{\prime}, j$) for any $\mu, \mu^{\prime} \in N, \alpha, \alpha^{\prime}, \beta, \beta^{\prime} \in \boldsymbol{N}^{n}$, $i, j \in\{1, \ldots, r\}$.

Theorem 3.1. Under the above assumptions, let \boldsymbol{G}_{1} be a Gröbner basis of $\phi(N)$ with respect to \prec_{D} and put $\boldsymbol{G}_{0}:=\boldsymbol{G}_{1} \cap K[s, x]^{r}$. Let \mathscr{T} be the $\mathfrak{O}_{X}[s]$-submodule of $\left(\mathscr{O}_{X}[s]\right)^{r}$ generated by \boldsymbol{G}_{0}. Then \mathcal{M} is specializable at p if and only if $\mathscr{T}_{p} \cap$ $K[s] e_{i} \neq\{0\}$. If \mathcal{M} is specializable, then its b_{-} function $b(s, p)$ is the monic polynomial of s of the least degree that satisfies $b(s, p) e_{i} \in \mathscr{J}_{p} \cap K[s]^{r}$ for any $i=1, \ldots, r$.

Since we have a set of generators of \mathscr{T}, it is easy to compute $\mathscr{T} \cap K[s]^{r}$. This can be done, e.g., by primary decomposition of the $K[s, x]$ submodule of $K[s, x]^{r}$ which is generated by \boldsymbol{G}_{0} (cf.[8]). Thus we obtain an algorithm of determining if \mathcal{M} is specializable at each point of X and of computing the b-function if that is the case.
4. Induced system. We retain the notation of the preceding section. The induced system of \mathcal{M} to X is the complex

$$
\mathcal{M}_{X}^{*}: 0 \rightarrow \mathcal{M} \xrightarrow{t} \mathcal{M} \rightarrow 0
$$

of left \mathscr{D}_{X}-modules, where the homomorphism t denotes the one defined by $t(u)=t u$ for $u \in \mathcal{M}$. Let us write $\mathcal{M}_{X}:=\mathcal{M} / t \mathcal{M}$. For each integer m, we put

$$
\operatorname{gr}_{m}^{F}(\mathcal{M}):=F_{m}(\mathcal{M}) / F_{m-1}(\mathcal{M})
$$

Lemma 4.1. Assume that $b(s) \in K[s]$ satis. fies $b\left(t \partial_{t}\right) \operatorname{gr}_{0}^{F}(\mathcal{M})=0$. Then the homomorphism $t: \operatorname{gr}_{k+1}^{F}(\mathcal{M}) \longrightarrow \operatorname{gr}_{k}^{F}(\mathcal{M})$ is bijective if $b(k) \neq 0$.

Proposition 4.2. Assume that $b(s) \in K[s]$ satisfies $b\left(t \partial_{t}\right) \operatorname{gr}_{0}^{F}(\mathcal{M})=0$. Put

$$
\begin{aligned}
& k_{1}:=\max \{k \in \boldsymbol{Z} \mid b(k)=0\} \\
& k_{0}:=\min \{k \in \boldsymbol{Z} \mid b(k)=0\}
\end{aligned}
$$

Then \mathcal{M}_{X}^{*} is quasi-isomorphic to the complex $0 \rightarrow F_{k_{1}+1}(\mathcal{M}) / F_{k_{0}}(\mathcal{M}) \xrightarrow{t} F_{k_{1}}(\mathcal{M}) / F_{k_{0}-1}(\mathcal{M}) \rightarrow 0$ of left \mathscr{D}_{X}-modules. In particular, $t: \mathcal{M} \rightarrow \mathcal{M}$ is bijective if $b(k) \neq 0$ for any $k \in \boldsymbol{Z}$.

Proposition 4.3. Assume that there exists $b(s) \in K[s]$ and $m \in \boldsymbol{N}$ so that

$$
b\left(t \partial_{t}\right) \partial_{t}^{m} \operatorname{gr}_{0}^{F}(\mathcal{M})=0
$$

Assume, moreover, $b(k) \neq 0$ for any $k \in \boldsymbol{Z}$. Then the homomorphism $t: \mathcal{M} \rightarrow \mathcal{M}$ is injective.

Let P be an element of $F_{m}\left(\left(A_{n+1}\right)^{r}\right)$. Then we can write P in the form

$$
P=\sum_{i=1}^{r} \sum_{k=0}^{m} P_{i k}\left(t \partial_{t}, x, \partial\right) \partial_{t}^{k} e_{i}+R
$$

uniquely with $P_{i k} \in A_{n}\left[t \partial_{t}\right]$ and $R \in F_{-1}\left(\left(A_{n+1}\right)^{r}\right)$. Then we put

$$
\rho\left(P, k_{0}\right):=\sum_{i=1}^{r} \sum_{k=k_{0}}^{m} P_{i k}(0, x, \partial) \partial_{t}^{k} e_{i}
$$

for each integer k_{0} with $0 \leq k_{0} \leq m$.
Theorem 4.4. Assume that $b(s) \in K[s]$ satisfies $b\left(t \partial_{t}\right) \operatorname{gr}_{0}^{F}(\mathcal{M})=0$. Put

$$
\begin{aligned}
& k_{1}:=\max \{k \in \boldsymbol{Z} \mid b(k)=0\} \\
& k_{0}:=\max \{0, \min \{k \in \boldsymbol{Z} \mid b(k)=0\}\}
\end{aligned}
$$

(We have $k_{1}=m-1$ and $k_{0}=0$ under the assumption of Proposition 4.3.) Let \boldsymbol{G} be an $F W$ Gröbner basis of N. Then we have an isomorphism

$$
\mathcal{M}_{X} \simeq\left(\bigoplus_{i=1}^{r} \bigoplus_{k=k_{0}}^{k_{1}} \mathscr{D}_{X} \partial_{t}^{k} e_{i}\right) / \mathcal{N}_{X}
$$

of left $\mathscr{D}_{X^{-}}$-modules, where \mathcal{N}_{X} is the left $\mathscr{D}_{X^{\prime}}$-module generated by a finite set

$$
\begin{gathered}
\left\{\rho\left(\partial_{t}^{j} P, k_{0}\right) \mid P \in \boldsymbol{G}, j \in \boldsymbol{N}\right. \\
\left.k_{0} \leq j+\operatorname{ord}_{F}(P) \leq k_{1}\right\}
\end{gathered}
$$

Our next aim is to give an algorithm for computing the structure of the kernel $\mathscr{H}^{-1}\left(\mathcal{M}_{X}^{*}\right)$ of $t: \mathcal{M} \rightarrow \mathcal{M}$ as a left \mathscr{D}_{X}-module. For two integers $k_{0} \leq k_{1}$, put

$$
\tilde{\mathscr{D}}^{\left(k_{0}, k_{1}\right)}:=\bigoplus_{i=1}^{r} \bigoplus_{k=k_{0}}^{k_{1}} \mathscr{D}_{X}\left[t \partial_{t}\right] S_{k} e_{i}
$$

where we put $S_{k}:=\partial_{t}^{k}{ }^{k}$ if $k \geq 0$, and $S_{k}:=t^{-k}$ if $k<0$. Let P be a section of $\left(\left.\mathscr{D}_{K \times X}\right|_{X}\right)^{r}$ of F-order m. Then we can write P uniquely in the form

$$
P=\sum_{i=1}^{r} \sum_{k=-\infty}^{m} P_{i k}\left(t \partial_{t}, x, \partial\right) S_{k} e_{i}
$$

with $P_{i k} \in\left(\mathscr{D}_{X}\left[t \partial_{t}\right]\right)^{r}$. Then we define

$$
\tau\left(P, k_{0}\right):=\sum_{i=1}^{r} \sum_{k=k_{0}}^{m} P_{i k}\left(t \partial_{t}, x, \partial\right) S_{k} e_{i}
$$

Proposition 4.5. Let \boldsymbol{G} be an $F W$-Gröbner basis of N. Then, for any integers $k_{0} \leq k_{1}$, we have an isomorphism

$$
F_{k_{1}}(\mathcal{M}) / F_{k_{0}-1}(\mathcal{M}) \simeq \tilde{\mathscr{D}}^{\left(k_{0}, k_{1}\right)} / \mathscr{G}^{\left(k_{0}, k_{1}\right)}
$$

of left $\mathscr{D}_{X}\left[t \partial_{t}\right]$-modules, where $\mathscr{G}^{\left(k_{0}, k_{1}\right)}$ is a left $\mathscr{D}_{X}\left[t \partial_{t}\right]$-module generated by a finite set

$$
\begin{gathered}
\left\{\tau\left(S_{j} P, k_{0}\right) \mid P \in \boldsymbol{G}, j \in \boldsymbol{Z}\right. \\
\left.k_{0} \leq j+\operatorname{ord}_{F}(P) \leq k_{1}\right\}
\end{gathered}
$$

Let $\varphi: \widetilde{\mathscr{D}}^{\left(k_{0}+1, k_{1}+1\right)} \rightarrow \widetilde{\mathscr{D}}^{\left(k_{0}, k_{1}\right)}$ be a left $\mathscr{D}_{X^{-}}$ module homomorphism defined by

$$
\varphi\left(\sum_{i=1}^{r} \sum_{k=k_{0}}^{k_{1}} P_{i, k+1}\left(t \partial_{t}, x, \partial\right) S_{k+1} e_{i}\right)
$$

$$
=\sum_{i=1}^{r} \sum_{k=k_{0}}^{k_{1}} P_{i, k+1}\left(t \partial_{t}-1, x, \partial\right) T_{k} e_{i}
$$

with

$$
T_{k}:= \begin{cases}S_{k} & (k \leq-1) \\ t \partial_{t} S_{k} & (k \geq 0)\end{cases}
$$

Theorem 4.6. Under the same assumptions as in Proposition 4.2, we have an isomorphism

$$
\mathscr{H}^{-1}\left(\mathcal{M}_{X}^{\dot{*}}\right) \simeq \varphi^{-1}\left(\mathscr{G}^{\left(k_{0}, k_{1}\right)}\right) / \mathscr{G}^{\left(k_{0}+1, k_{1}+1\right)}
$$

as left $\mathscr{D}_{X}\left[t \partial_{t}\right]$-modules. Moreover, $\varphi^{-1}\left(\mathscr{G}^{\left(k_{0}, k_{1}\right)}\right) /$ $\mathscr{G}^{\left(k_{0}+1, k_{1}+1\right)}$ is finitely generated as left $\mathscr{D}_{X^{-}}$module.

The left $\mathscr{D}_{X}\left[t \partial_{t}\right]$-module $\varphi^{-1}\left(\mathscr{G}^{\left(k_{0}, k_{1}\right)}\right)$ can be easily computed by the same method as for computing ideal intersection and quotient in the polynomial ring by means of Gröbner basis (cf. [7]). Then by eliminating $t \partial_{t}$ also by means of a Gröbner basis, we get an algorithm of computing a presentation of $\mathscr{H}^{-1}\left(\mathcal{M}_{X}^{*}\right)$ as a left $\mathscr{D}_{X^{-}}$module.
5. Algebraic local cohomology. Let N be a left A_{n}-submodule of $\left(A_{n}\right)^{r}$ and put $M:=\left(A_{n}\right)^{r} / N$ and $\mathcal{M}:=\mathscr{D}_{X} \otimes_{A_{n}} M$. Let $f=f(x) \in K[x]$ be a polynomial and put $Y:=\{x \in X \mid f(x)=0\}$. Then the algebraic local cohomology group $\mathscr{H}_{[Y]}^{j}(\mathcal{M})$ has a structure of left \mathscr{D}_{X}-module and vanishes for $j \neq 0,1$ ([11]). Our purpose is to give an algorithm of computing $\mathscr{H}_{[Y]}^{j}(\mathcal{M})$ as a left $\mathscr{D}_{X^{-}}$module.

Let \mathscr{I} be a left ideal of $\mathscr{D}_{K \times X}$ generated by operators $t-f(x), \partial_{1}+\left(\partial f / \partial x_{1}\right) \partial_{t}, \ldots, \partial_{n}+$ $\left(\partial f / \partial x_{n}\right) \partial_{t}$, and put $\mathscr{L}:=\mathscr{D}_{K \times X} / \mathscr{I}$. Then by a method similar to that used by Malgrange [17], we get the following.

Theorem 5.1. We have isomorphisms

$$
\mathscr{H}^{j}\left(\left(\mathcal{M} \otimes_{O_{X}} \mathscr{L}\right)_{X}^{\dot{\circ}}\right) \simeq \mathscr{H}_{[Y]}^{j+1}(\mathcal{M})
$$

of left $\mathscr{D}_{X^{-}}$modules for $j=-1,0$.
Let p_{1} and p_{2} be the projections of $X \times K \times$ X to X and to $K \times X$ respectively and put

$$
\Delta:=\{(x, t, y) \in X \times K \times X \mid x=y\}
$$

Then we have by [11]

$$
\mathcal{M} \stackrel{L}{\otimes}_{O_{x}} \mathscr{L} \simeq \mathscr{O}_{\Delta} \stackrel{L}{\otimes}_{O_{x x \times x x}}(\mathcal{M} \dot{\otimes} \mathscr{L})
$$

with

$$
\begin{gathered}
\mathcal{M} \dot{\otimes} \mathscr{L}:=\mathscr{D}_{X \times K \times X} \bigotimes_{p_{1}{ }^{-1} \mathscr{O}_{x} \otimes p_{2}^{-1} \mathscr{D}_{K \times X}} \\
\left(p_{1}^{-1} \mathcal{M} \bigotimes_{K} p_{2}^{-1} \mathscr{L}\right),
\end{gathered}
$$

where $\stackrel{L}{\otimes}$ denotes the left derived functor of \otimes in the derived category. In other words, $\mathcal{M} \otimes_{\mathbb{O}_{X}} \mathscr{L}$ coincides with the induced system of $\mathcal{M} \otimes \mathscr{L}$ along Δ. It is easy to see that $\mathcal{M} \mathscr{\mathscr { L }}$ is specializable along Δ (in fact, Δ is non-characteristic for this module). Hence we can compute $\mathcal{M} \otimes_{\mathscr{O}_{X}} \mathscr{L}$ by applying Theorem 4.4 repeatedly with $k_{0}=k_{1}=$
0. Combining this fact with Theorems 4.4, 4.6, 5.1, we obtain an algorithm of computing $\mathscr{H}_{[Y]}^{j}(\mathcal{M})$ for $j=0,1$.

Theorem 5.2. Assume $r=1$ and let $u \in$ \mathcal{M} be the residue class of $1 \in \mathscr{D}_{X}$. Let $\tilde{b}(s)$ be the b-function of $\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathscr{L}$ along X in the sense of Section 3 and let $b(s)$ be the b-function for f and u defined by (1.1) both at a point p of Y. Then we have the following:
(1) $\quad b(s)$ divides $\tilde{b}(-s-1)$;
(2) if the homomorphism $f: \mathcal{M} \rightarrow \mathcal{M}$ defined by $f(v)=$ fv for $v \in \mathcal{M}$ is injective at p, then we have $b(s)= \pm \tilde{b}(-s-1)$;
(3) the homomorphism $f: \mathcal{M} \rightarrow \mathcal{M}$ is injective if and only if

$$
\mathscr{H}^{-1}\left(\left(\mathscr{M} \otimes_{\mathscr{O}_{X}} \mathscr{L}\right)_{X}\right)=0
$$

Thus the algorithm for $\tilde{b}(s)$ provides an algorithm to compute the b-function for f and u in generic cases. Since $f: \mathscr{O}_{X} \rightarrow \mathscr{O}_{X}$ is injective, we have an algorithm to compute the BernsteinSato polynomial of an arbitrary f.

It is also possible (in generic cases) to compute $\mathscr{H}_{[Y]}^{j}(\mathcal{M})$ for algebraic set Y of codimension greater than one. For example, let $f_{1}(x), f_{2}(x)$ be two polynomials and put

$$
\begin{aligned}
& Y_{i}:=\left\{x \in X \mid f_{i}(x)=0\right\} \quad(i=1,2) \\
& Y:=Y_{1} \cap Y_{2}
\end{aligned}
$$

Assume that $\mathscr{H}_{\left[\left[_{1}\right]\right.}^{j}(\mathcal{M})=0$ for $j \neq j_{0}$. Then we can compute

$$
\mathscr{H}_{[Y]}^{j}(\mathcal{M})=\mathscr{H}_{\left[Y_{2}\right]}^{j-j_{0}}\left(\mathscr{H}_{\left[Y_{1}\right]}^{j_{0}}(\mathcal{M})\right)
$$

explicitly. The following computation was carried out by using Kan ([24]).

Example 5.3. Put $X=K^{3}, f_{1}:=x^{2}-y^{3}$, $f_{2}:=y^{2}-z^{3}$, and $Y:=\left\{(x, y, z) \in X \mid f_{1}(x, y\right.$, $\left.z)=f_{2}(x, y, z)=0\right\}$. Then we have $\mathscr{H}_{[Y]}^{j}\left(\mathscr{O}_{X}\right)$ $=0$ for $j \neq 2$ and

$$
\mathscr{H}_{[Y]}^{2}\left(\mathscr{O}_{X}\right) \simeq \mathscr{D}_{X} / \mathscr{I},
$$

where \mathscr{I} is the left ideal of \mathscr{D}_{X} generated by f_{1}, f_{2} and

$$
\begin{aligned}
& 9 x \partial_{x}+6 y \partial_{y}+4 z \partial_{z}+30 \\
& 9 z^{2} y^{2} \partial_{x}+6 z^{2} x \partial_{y}+4 y x \partial_{z}
\end{aligned}
$$

Let u_{j} be the residue class of f_{j}^{-1} in $\mathscr{H}_{\left[Y_{j}\right]}^{1}\left(\mathscr{O}_{X}\right)=$ $\mathscr{O}_{X}\left[f_{j}^{-1}\right] / \mathscr{O}_{X} \quad$ with $\quad Y_{j}:=\left\{(x, y, z) \mid f_{j}(x, y, z)\right.$ $=0\}$. Then the b-function for f_{2} and u_{1} at $0=$ $(0,0,0)$ is

$$
\begin{aligned}
& (s+1)\left(s+\frac{1}{12}\right)\left(s+\frac{5}{12}\right)\left(s+\frac{7}{12}\right) \\
& \left(s+\frac{5}{6}\right)\left(s+\frac{11}{12}\right)\left(s+\frac{7}{6}\right)
\end{aligned}
$$

while the b-function for f_{1} and u_{2} at 0 is
$(s+1)\left(s+\frac{7}{18}\right)\left(s+\frac{11}{18}\right)\left(s+\frac{13}{18}\right)$
$\left(s+\frac{5}{6}\right)\left(s+\frac{17}{18}\right)\left(s+\frac{19}{18}\right)\left(s+\frac{7}{6}\right)\left(s+\frac{23}{18}\right)$.

References

[1] I. N. Bernstein: Modules over a ring of differential operators. Functional Anal. Appl., 5, 89-101 (1971).
[2] J. E. Bjorrk: Rings of Differential Operators. North-Holland, Amsterdam (1979).
[3] A. Borel et al.: Algebraic D-Modules. Academic Press, Boston (1987).
[4] J. Briançon, M. Granger, Ph. Maisonobe, and M. Miniconi: Algorithme de calcul du polynôme de Bernstein: cas non dégénéré. Ann. Inst. Fourier, 39, 533-610 (1989).
[5] B. Buchberger: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. , 4, 374-383 (1970).
[6] F. Castro: Calculs effectifs pour les idéaux d'opérateurs différentiels. Travaux en Cours, vol. 24"; Hermann Paris, pp. 1-19 (1987).
$[7]$ D. Cox, J. Little, and D. O'Shea, : Ideals, Varieties, and Algorithms. Springer, Berlin (1992).
[8] D. Eisenbud, C. Huneke, and W. Vasconcelos: Direct methods for primary decomposition. Invent. Math., 110, 207-235 (1992).
[9] A. Galligo: Some algorithmic questions on ideals of differential operators. Lecture Notes in Comput. Sci., vol. 204, Springer, Berlin, pp. 413-421 (1985).
[10] M. Kashiwara: B-functions and holonomic systems-Rationality of roots of b-functions. Invent. Math., 38, 33-53 (1976).
[11] M. Kashiwara: On the holonomic systems of linear differential equations. II . Invent. Math., 49, 121-135 (1978).
[12] M. Kashiwara: Vanishing cycle sheaves and holonomic systems of differential equations. Lecture Notes in Math., vol. 1016. Springer, Berlin, pp.134-142 (1983).
[13] M. Kashiwara and T. Kawai: Second microlocalization and asymptotic expansions. Lecture Notes in Physics, vol. 126, Springer, Berlin, pp. 21-76 (1980).
[14] Y. Laurent: Polygône de Newton et b-fonctions pour les modules microdifferentiels. Ann. Sci. Éc. Norm. Sup., 20, 391-441 (1987).
[15] Y. Laurent and P. Schapira: Images inverses des modules différentiels. Compositio Math., 61, 229-251 (1987).
[16] P. Maisonobe: \mathscr{D}-modules: An overview towards effectivity. Computer Algebra and Differential Equations (ed. E. Tournier). Cambridge

University Press, pp. 21-55 (1994).
[17] B. Malgrange: Le polyôme de Bernstein d'une singularité isolée. Lecture Notes in Math., vol. 459, Springer, Berlin, pp. 98-119 (1975).
[18] T. Oaku: Algorithms for finding the structure of solutions of a system of linear partial differential equations. Proceeding of International Symposium on Symbolic and Algebraic Computation (eds, J. Gathen, and M. Giesbrecht). ACM, New York pp. 216-223 (1994).
[19] T. Oaku: Algorithmic methods for Fuchsian systems of linear partial differential equations. J. Math. Soc. Japan, 47, 297-328 (1995).
[20] T. Oaku: An algorithm of computing b-functions. Duke Math. J. (to appear).
[21] M. Sato, M. Kashiwara, T. Kimura, and T. Oshima:

Micro-local analysis of prehomogeneous vector spaces. Invent. Math., 62, 117-179 (1980).
[22] N. Takayama: Gröbner basis and the problem of contiguous relations. Japan J. Appl. Math., 6, 147-160 (1989).
[23] N. Takayama: An algorithm of constructing the integral of a module-an infinite dimensional analog of Gröbner basis. Proceedings of International Symposium on Symbolic and Algebraic Computation (eds, S. Watanabe and M. Nagata). ACM, New York, pp. 206-211 (1990).
[24] N. Takayama: Kan: A system for computation in algebraic analysis. http: //www.math. s. kobe-u. ac. jp (1991-).
[25] T. Yano: On the theory of b-functions. Publ. RIMS, Kyoto Univ., 14, 111-202 (1978).

