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1. Introduction. Let K be an algebraically section u of ,/// generates u///. We identify X with
closed field of characteristic zero and let X be a the subset {(t, x) K x X t 0} of K x X.
Zariski open set of Kn

with a positive integer n. Then the b-function of u along X at p X is a
We fix a coordinate system x (xl,..., xn) of nonzero polynomial b(s) K[s] of the least
X and write 0 (01,..., On) with 0i: 0/Oxi. degree that satisfies
We denote by x the sheaf of algebraic differen- (b(t8t) + tP(t, x, tt, ))u 0
tial operators on X (of. [2], [3]). with a germ P(t, x, tt, ) of ,x at p, where

We assume that (a presentation of) a cohe- we write t := /St. vtl is called specializable
rent left x-module /// is given. Let u be a see- along X at p if such b(s) exists.
tion of / and let f f(x) be an arbitrary We first present an algorithm which com-
polynomial of n variables. Let s be an indeter- putes b(s), or determines that there is none, by
minate. If v/// is holonomic, then for each point p using a kind of GrObner basis for the Weyl
of Y := {x X f(x) 0}, there exist a germ algebra related to a filtration introduced by
P(x, , s) of x[S] at p and a polynomial Kashiwara [12]. Such Grtbner bases were used
b(s) K[s] of one variable so that in [18], [19], [20].
(1.1) P(x, O, s)(fS+lu) b(s)fSu If J//is specializable, then its induced system
holds (cf. [11]). More precisely, (1.1) means that to X is the complex of left flx-modules J// whose
there exists a nonnegative integer m so that cohomology groups are coherent flx-modules. We
Q := fm-s(b(s) P(x, O, s)f)f x[S] also obtain an algorithm of computing the coho-

satisfies Qu 0 in ,///Is] "= K[s] @;,///. A mology groups of J// by using an FW-Gr(Sbner

monic polynomial b(s)of the least degree that basis. These algorithms for the b-function and
satisfies (1.1) is called the (generalized) b-func- the induced system, combined with a viewpoint of
tion for f and u. When J// coincides with the Malgrange [17], provide algorithms for the
sheaf Ox of regular functions and u 1, we get b-function for a polynomial (and a section of a
the classical b-function (or the Bernstein-Sato holonomic system), and for the algebraic local
polynomial) of f Algorithms for computing the cohomology groups.
Bernstein-Sato polynomial have been given by When K coincides with the field C of corn-
several authors ([21], [25], [4], [16]) but not for plex numbers, we can consider the problems ex-
an arbitrary f. plained so far with flx replaced by the sheaf fl:n

One of the main purposes of the present pap- of analytic differential operators. Then our algor-
er is to give algorithms for computing the b- ithms yield correct solutions also in this analytic

an d/anfunction for u and f and for computing the algeb- case if the left flx-module in question is
raic local cohomology groups yl(J//)(J" 0,1) written in the form d//an n @xj/ with a
as left fl0x-modules (cf. [11] for the definition), coherent flx-module whose presentation is
The algorithm for the local cohomology groups given explicitly.
needs some information on the b-function. We have implemented the algorithms by us-

These algorithms are actually obtained as ing a computer algebra system Kan [24]. Details
byproducts of the solution of more general prob- of the present paper will appear elsewhere.
lems as follows: 2. Gribner bases. Let us denote by A, and

Let J// be a left coherent Kx-module. For by An+ the Weyl algebra on n variables x, and
the sake of simplicity, let us assume here that a the Weyl algebra on n-t- 1 variables (t, x) re-
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spectively with coefficients in K. Let r be a posi-
tive integer and put L "= S2+n N N _]V

X Nn
with N {0,1,2,...}. An element P of

(A,+) is written in a finite sum

(2.1) P atxOtOe
i= (,u,a,B)L

with au,z K, e (1,0,..., 0),..., er
(0,..., O,1),x’- " " "x "’x O ’’"
OnBn for a (ax,..., an) - (1’"" n)
Nn"

For each integer m, we set

aaw 0 if v--a > m).
Then (Fm ((An+) ))m2 constitutes a filtration of
(An+) r. For a nonzero element P of (An+) r, the
F-order ordr(P) of P is defined as the least m
Z such that P m((An+l)r).

Let < be a total order on L x (1,..., r)
which satisfies

(A-l) (, i) < (,j) implies (+ r, i) <r
(B+ 7, J) for any ,fl, 7 L and i,j

{1,..., r}
(A-2) if v--N < v’--ff, then (, v, a,, i)

<y(ff, v’,a,’,j) for any a,,a,’
Xn

’, V, N and any i,j
{1,..., r}

(A-3) (a, a, a, , i) v (0,0,0,0, i) for any
aN,a,N,i {1,..., r}.

Let P be a nonzero element of (An+) r
which

is written in the form (2.1). Then the leading ex-

ponent lexpv(P) L x {1,..., r} of P with re-
spect to <v is defined as the maximum element

max{(a, v, a, , i) az O)
with respect to the order <. The set of leading
exponents Ev( of a subset N of (An+) r

is de-
fined by

Ev( "= {lexpr(P) P N {0}}.
Definition 2.1. A finite set G of generators

of a left An+-submodule N of (An+) r
is called an

FW-Gr6bner basis of N if we have
Ev(N) O (lexpv(P) +L),

where we write
(a, i) + L {(a + , i) lB L}

for a L and {1,..., r}.
Since the order < is not a well-order, the

Buchberger algorithm ([5], [9], [6], [22]) for com-
puting Gr0bner bases does not work directly. In
order to bypass this difficulty to obtain an algor-
ithm of computing FW-Gr0bner bases, we use

the homogenization technique.
Definition 2.2. For 2, , v, 2’, if, v’ N

and o,/, c’,/’ Nn, an order <n on L
{1,..., r} with L ": N x L is defined so that
we have (2,, v, ,fl, i) H(2’, ff, V,,’ fl’,
j) if and only if one of the following conditions

holds"
(1) 2 <
(2) 2=2’, (g+l,v,,,i)<y(ff+l’,v’,’,

’,j) with l, l" N such that v--g- l
v’ ’ l’;

(3) (2, u a, fl, i) (2’, u, ,fl’,j),
This definition is independent of the choice of l,
l’ in view of the condition (A-1).

Lemma 2.3. (1) g is a well-order.
(2) If v- 2 v’-- ’-- ’, then (, , v,

a fl, i) <n(’,F a’V, fl’, j) if .and only

if (, v, a, , i) < (if, v, fl’, j).
Definition 2.4. An element P of (An+l[xo]) r

Of the form

txaP E a,Xo Ottoe
2,,v,a,B

is said to be F-homogeneous of order m if

0whenever v--a-- m.
Definition 2.5. For an element P of (A,+) r

of the form (2.1), put m’=min(v--
0 for some , fl Nn

and {1,..., r}}. Then
the F- homogenization P (An+ [Xo]) r of P is

defined by

eh auvaiXo 0 0 ei.v-u-mtUxa
i= u,v,a,B

P* is F-homogeneous of order m.
Proposition 2.6. Let N be a left An+x[Xo]-

submodule of (An+ Ixo]) r
generated by F- homo-

geneous operators. Then there exists an H-GrObner
basis (i.e. a GrObner basis with respect to <H) con-
sisting of F-homogeneous operators. Moreover, such
an H-GrObner basis can be computed by the Buch-
berger algorithm.

Theorem 2.7. Let N be a left An+-sub-
module of (An+) r

generated by P1, Pa
(An+) . Let us denote by N the left An+[Xo]-
submodule of (A,+[Xo]) r

generated by (P)9
(P,) . Let (Q (Xo) Q (Xo) ) e an H-
GrObner basis of N consistin of F-homogeneous
operators. Ten G(1)"= (Q(1),..., Q(1)} is an
FW-GrObner basis of N.

Let us denote by x Ix the sheaf theoretic
restriction of x to X X x (0}. Then for
germ Q of (x ]x)r at p X, there exist P
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(An/l) and a(t, x) Kit, x] with a(O, p) 4= 0
so that Q- a(t, x)-IP. For each integer m, we
put

1pF ((x lx) {a- P F (A"/) r

a a(t, x) Kit, x], a(O, p) :/: 0}.
For a germ Q of (Kx Ix) r

at p, its F-order
ordF(Q) is defined as the minimum m so
that P F((x x)r). Put m "= orde(Q) and
let a(t, x) Kit, x] and P (A,+) r

be as
above. Suppose that P is written in the form
(2.1). Then the formal symbol (Q)of is de-
fined by

(Q) 8(Q) "= a(O, x) - Z
i=1 -=m

Definition 2.8. Let P be a nonzero element
of (A+I) (resp. (gx Ix) ) of F-order m. Then
we define (P)(s)e (A[s]) (resp. (x[S])),
by

o(tP) (P)(tS) if m 2 0,
a0(-P) (P) (t) f m < 0.

Theorem 2.9. We use the same notation as
in Theorem 2.7. Let W be the 1
submodule of (gx x)r generated by N. Let
be the 1 x[S]-submodule of (x[S]) r

generated
by the set ((P)(s)P e , ordy(P) 0}.
Then () is generated by (Q (1)
(V()).

3. b-function of a D-module.. Let be a
left coherent xx-module on X. We assume
that a left An+-submodule N of (An+) is given
explicitly so that x Ix+M holds
with M "= (A,+) /N. Set "= gx Ix
N c (x ]x). For each integer m, put

F() F(( )),
F() F(( I))/F().

Then {F()}z is a filtration of satisfying

F( ])F() F+()
for any k, m Z. The b-function b(s, p)
K[s] of (with respect to the filtration

(F()}) at p X is the monic polynomial b(s,
p) of s of the least degree, if any, that satisfies
(3.1) b(tSt, P)(Fo()/F_,()) O.
If such b(s, p)exists, is called specializable
along X at p. It is known that if is holonomic,
then is specializable at any p X ([1 3], [14]).

Let G be an FW-Gr0bner basis of N, which
can be computed by the homogenization and the
Buchberger algorithm with a set of generators as
input (Theorem 2.7). Put (G)"= ((P)

G} and let (N) be the left An [s] -submodule of
(An[S]) generated by (G). Let "<D be a total
order on Lo x {1, r} with Lo’= N

1+2n

which satisfies (A-l) with L replaced by Lo and
(A-4) (o, i) >’D (0, i) for any o L0\{0} and
i {1,..., r};
(A-5) 1/31 < [fl’limplies (/2, c, fl, i) "<D
a’, fl’, j) for any /2, /2’ N, ee, a’, fl, fl" Nn,
i,j {1,..., r}.

Theorem 3.1. Under the above assumptions,
let G1 be a GrObner basis of b(N) with respect to

"<D and put Go:-G1 f)K[s, x] r. Let 57 be the
x[S]-submodule of (x[S]) r

generated by Go.
Then l is specializable at p if and only if
K[s]e :/= {0}. If is specializable, then its b-
function b(s, 10) is the monic polynomial of s of the
least degree that satisfies b(s, p)e 3" K[s]
for any 1,. r.

Since we have a set of generators of , it is

easy to compute 57 N K[s] . This can be done,
e.g., by primary decomposition of the K[s, x]-
submodule of K[s, x] r

which is generated by Go
(cf.[8]). Thus we obtain an algorithm of determin-
ing if 3// is specializable at each point of X and of
computing the b-function if that is the case.

4. Induced system. We retain the notation
of the preceding section. The induced system of
3// to X is the complex

of left x-modules, where the homomorphism t
denotes the one defined by t(u) tu for u
Let us write x := /t. For each integer m,
we put

Fgrin(J//) "---- Fm (dJ)/Fm_ (dJ)
Lemma 4.1. Assume that b(s) K[s] satis-

F
ties b(tOt)gro(dJ)= O. Then the homomorphism

F Ft" gr+ (d//) -- gr, (d//) is bijective if b(k) :/: O.
Proposition 4.2. Assume that b(s) K[s]

F
satisfies b(tOt)gro (dJ) O. Put

kl:-- max(k Z b(k) 0},
ko := min{k Z Ib(k) 0}.

Then l’x is quasi-isomorphic to the complex
0-- F+I()/Fo() t_ F, (I)/Fo_I () 0

of left x-modules. In particular, t l --* t is bi-

jective if b(k) 4= 0 for any k Z.
Proposition 4.3. Assume that there exists

b(s) K[s] and m N so that

b(tO,) , gro (/) O.
Assume, moreover, b(k) 4 0 for any k Z. Then
the homomorphism t -- is injective.
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Let P be an element of Fm((An+l)r). Then
we can write P in the form

P Pi (tt, x, O) Otei -+- R
i=l k=0

uniquely with PiE An[tOt] and R F_((An+)r).
Then we put

P(P, ko) "= PiE(O,x,
i=l k=k

for each integer ko with 0 <-- ko <- m.
Theorem 4.4. Assume that b(s) K[s]

F
satisfies b(tOt)gro (d) O. Put

kl:= max{k ZIb(k) =0},
k0 := max(0, min{k Z Ib(k) 0}}.

(We have k m- 1 and ko 0 under the
assumption of Proposition 4.3.) Let G be an FW-
GrObner basis of N. Then we have an isomorphism

kl

i=1 kfk

of left x-modules, where Nx is the left x-module
generated by a finite set

(p (O/P ko) P G, j N,
ko <- j + ordr(P) <- k}.

Our next aim is to give an algorithm for
computing the structure of the kernel -l(d//) of
t:d//-- / as a left flx-module. For two integers

ko <- k, put
kl

.=
i---1 k=k

where we put SE "= OtE if k-> 0, and S
if k< 0. Let P be a section of (Kxlx) r

of
F-order m. Then we can write P uniquely in the
form

P P(tOt, x, O)Se
i=l k=-oo

with PiE (x[tOt])r. Then we define

v(P, ko) := P(tOt, x, O) Se.
i=l k=k

Proposition 4.5. Let G be an FW-GrObner
basis of N. Then, for any integers ko k, we have
an isomorphism

(dZ)/F o_
of left x[tOt]-modules, where N(Eo,E1) is a left
x[tOt]-module generated by a finite set

{v(SP, ko) P G, j Z,
k0 <-j + ordr(P) <_ k}.

Let (.’ (kO+l’kl+l) --" (kO’kl) be a left flx-
module homomorphism defined by

q) " Pi,k+ (tOt, X, O) Sk+e
k=k

with

P,+(tO,- 1, x, O)Te
i=1 k=k

Sk (k <-- 1)
Tk tOtSk (k >- 0).

Theorem 4.6. Under the same assumptions

as in Proposition 4.2, we have an isomorphism
--1 (ko+l,kl+l)

--1 kl)as left x[tOt]-modules. Moreover, q) ((Eo, /
NEo+,Et+) is finitely generated as left x-module.

The left x[tOt]-module o- can be
easily computed by the same method as for com-

puting ideal intersection and quotient in the
polynomial ring by means of Gr6bner basis (cf.
[7]). Then by eliminating tO also by means of a

GrObner basis, we get an algorithm of computing
a presentation of W-(d//) as a left flx-module.

5. Algebraie loeal eohomology. Let N be a
left An-submodule of (An) r and put M (A,)r/N
and /’= flx @A, M. Let f f(x) K[x] be a

polynomial and put Y := {x X[f(x) 0}.
Then the algebraic local cohomology group
Wyl(d//) has a structure of left flx-module and
vanishes for j 4= 0,1 ([11]). Our purpose is to
give an algorithm of computing WJiyl(d//) as a left

flx-module.
Let be a left ideal of gx generated by

operators t--f(x), + (Of/Ox)Ot, On +
(Of/Oxn)Ot, and put := x/fl. Then by a

method similar to that used by Malgrange [17],
we get the following.

Theorem 5.1. We have isomorphisms
+1z

of left x-modules for j 1,0.
Let p and P2 be the projections of X K

X to X and to K X respectively and put
A:= {(x, t, y) X x K x x lx-

Then we have by [111
L L

with

(P1-1J/// K
L

where @ denotes the left derived functor of in
the derived category. In other words, /@e^x
coincides with the induced system of @
along A. It is easy to see that () is specializ-
able along A (in fact, A is non-characteristic for
this module). Hence we can compute @ex by
applying Theorem 4.4 r’epeatedly with ko k
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0. Combining this fact with Theorems 4.4, 4.6,
5.1, we obtain an algorithm of computing

:Yl () for j 0,1.
Theorem 5.2. Assume r--I and let u

agt be the residue class of 1 x. Let b(s) be the

b-function of l Ox" along X in the sense of Sec-
tion 3 and let b(s) be the b-function for f and u

defined by (1.1) both at a point p of Y. Then we

have the following"
(1) b(s) divides (-- s- 1);
(2) if. the homomorphism f l -- 3/1 defined

by f(v) --fv for v Pl is injective at p,
then we have b(s) +/- (-- s- 1)

(3) the homomorphism f a --* al is injective

if and only if-( (az (R)) ") o.
Thus the algorithm for /(s) provides an

algorithm to compute the b-function for f and u
in generic cases. Since f’x-* x is injective,
we have an algorithm to compute the Bernstein-
Sato polynomial of an arbitrary f

It is also possible (in generic cases) to com-
pute EyI(3//) for algebraic set Y of codimension
greater than one. For example, let fl(x), f2(x) be
two polynomials and put

Y’-- (xXIf(x) -0} (i-- 1,2),
Y.= Y y.

Assume that tylj(3//)- 0 for j 4: Jo. Then we
can compute

,J--Jo Jo
rl (2t) r.l (irl (2t))

explicitly. The following computation was carried
out by using Kan ([2 4]).

Example 5.3. Put X- K3,f’-x2-y,a
2f’--y --z, and Y ( (x y, z) X f (x y

z) f(x, y, z) 0}. Then we have Wrl(x)
0 for j4:2 and

rl (x) x/,
where is the left ideal of x generated by f, f.
and

9XOx + 6yOy + 4zO + 30,
9zyOx + 6z xOy + 4yxO,.

Let u be the residue class of f- in Wir, (Ox)
Ox[f-]/Ox with Y’= {(x, y, z)If(x, y, z)

0}. Then the b-function for f and u at 0
(0,0,0) is

,s + 1)(s + l-)(s + 1-5-ff)(s + -f-if2)
(s + +

while the b-function for f and u at 0 is

(s + 1)(s + 1-%)(s + +

(s + + + +
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