Algorithms for b-Functions, Induced Systems, and Algebraic Local Cohomology of D-Modules

By Toshinori OAKU

Department of Mathematical Sciences, Yokohama City University (Communicated by Kiyosi ITÔ, M.J. A., Oct. 14, 1996)

1. Introduction. Let K be an algebraically closed field of characteristic zero and let X be a Zariski open set of K^n with a positive integer n. We fix a coordinate system $x = (x_1, \ldots, x_n)$ of X and write $\partial = (\partial_1, \ldots, \partial_n)$ with $\partial_i := \partial / \partial x_i$. We denote by \mathcal{D}_X the sheaf of algebraic differential operators on X (cf. [2], [3]).

We assume that (a presentation of) a coherent left \mathcal{D}_X -module \mathcal{M} is given. Let u be a section of \mathcal{M} and let f = f(x) be an arbitrary polynomial of n variables. Let s be an indeterminate. If \mathcal{M} is holonomic, then for each point pof $Y := \{x \in X \mid f(x) = 0\}$, there exist a germ $P(x, \partial, s)$ of $\mathcal{D}_X[s]$ at p and a polynomial $b(s) \in K[s]$ of one variable so that

(1.1) $P(x, \partial, s)(f^{s+1}u) = b(s)f^s u$

holds (cf. [11]). More precisely, (1.1) means that there exists a nonnegative integer m so that

 $Q := f^{m-s}(b(s) - P(x, \partial, s)f)f^s \in \mathcal{D}_x[s]$ satisfies Qu = 0 in $\mathcal{M}[s] := K[s] \otimes_K \mathcal{M}$. A monic polynomial b(s) of the least degree that satisfies (1.1) is called the (generalized) b-function for f and u. When \mathcal{M} coincides with the sheaf \mathcal{O}_x of regular functions and u = 1, we get the classical b-function (or the Bernstein-Sato polynomial) of f. Algorithms for computing the Bernstein-Sato polynomial have been given by several authors ([21], [25], [4], [16]) but not for an arbitrary f.

One of the main purposes of the present paper is to give algorithms for computing the *b*-function for u and f and for computing the algebraic local cohomology groups $\mathscr{H}^{j}_{[Y]}(\mathscr{M})$ (j = 0,1) as left \mathscr{D}_{X} -modules (cf. [11] for the definition). The algorithm for the local cohomology groups needs some information on the *b*-function.

These algorithms are actually obtained as byproducts of the solution of more general problems as follows:

Let \mathcal{M} be a left coherent $\mathcal{D}_{K \times X}$ -module. For the sake of simplicity, let us assume here that a section u of \mathcal{M} generates \mathcal{M} . We identify X with the subset $\{(t, x) \in K \times X \mid t = 0\}$ of $K \times X$. Then the *b*-function of u along X at $p \in X$ is a nonzero polynomial $b(s) \in K[s]$ of the least degree that satisfies

 $(b(t\partial_t) + tP(t, x, t\partial_t, \partial))u = 0$

with a germ $P(t, x, t\partial_t, \partial)$ of $\mathcal{D}_{K \times X}$ at p, where we write $\partial_t := \partial / \partial t$. \mathcal{M} is called *specializable* along X at p if such b(s) exists.

We first present an algorithm which computes b(s), or determines that there is none, by using a kind of Gröbner basis for the Weyl algebra related to a filtration introduced by Kashiwara [12]. Such Gröbner bases were used in [18], [19], [20].

If \mathscr{M} is specializable, then its induced system to X is the complex of left \mathscr{D}_X -modules \mathscr{M}_X whose cohomology groups are coherent \mathscr{D}_X -modules. We also obtain an algorithm of computing the cohomology groups of \mathscr{M}_X by using an FW-Gröbner basis. These algorithms for the *b*-function and the induced system, combined with a viewpoint of Malgrange [17], provide algorithms for the *b*-function for a polynomial (and a section of a holonomic system), and for the algebraic local cohomology groups.

When K coincides with the field C of complex numbers, we can consider the problems explained so far with \mathcal{D}_X replaced by the sheaf \mathcal{D}_X^{an} of *analytic* differential operators. Then our algorithms yield correct solutions also in this analytic case if the left \mathcal{D}_X^{an} -module \mathcal{M}^{an} in question is written in the form $\mathcal{M}^{an} = \mathcal{D}_X^{an} \otimes_{\mathcal{D}_X} \mathcal{M}$ with a coherent \mathcal{D}_X -module \mathcal{M} whose presentation is given explicitly.

We have implemented the algorithms by using a computer algebra system Kan [24]. Details of the present paper will appear elsewhere.

2. Gröbner bases. Let us denote by A_n and by A_{n+1} the Weyl algebra on n variables x, and the Weyl algebra on n+1 variables (t, x) re-

spectively with coefficients in K. Let r be a positive integer and put $L := N^{2+2n} = N \times N \times N^n \times N^n$ with $N := \{0, 1, 2, ...\}$. An element P of $(A_{n+1})^r$ is written in a finite sum

(2.1)
$$P = \sum_{i=1}^{r} \sum_{(\mu,\nu,\alpha,\beta) \in L} a_{\mu\nu\alpha\beta i} t^{\mu} x^{\alpha} \partial_{t}^{\nu} \partial^{\beta} e_{i}$$
with $a_{\mu\nu\alpha\beta i} \in K$, $e_{1} := (1,0,\ldots,0),\ldots, e_{r} := (0,\ldots,0,1), x^{\alpha} := x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}, \partial^{\beta} := \partial_{1}^{\beta_{1}}\cdots \partial_{n}^{\beta_{n}}$ for $\alpha = (\alpha_{1},\ldots,\alpha_{n}), \beta = (\beta_{1},\ldots,\beta_{n}) \in N^{n}$.

For each integer m, we set

 $F_m((A_{n+1})^r) := \{ P = \sum_{i=1}^r \sum_{(\mu,\nu,\alpha,\beta) \in L} a_{\mu\nu\alpha\beta i} t^{\mu} x^{\alpha} \partial_t^{\nu} \partial^{\beta} e_i | a_{\mu\nu\alpha\beta i} = 0 \text{ if } \nu - \mu > m \}.$

Then $\{F_m((A_{n+1})^r)\}_{m \in \mathbb{Z}}$ constitutes a filtration of $(A_{n+1})^r$. For a nonzero element P of $(A_{n+1})^r$, the *F*-order $\operatorname{ord}_F(P)$ of P is defined as the least $m \in \mathbb{Z}$ such that $P \in F_m((A_{n+1})^r)$.

Let \prec_F be a total order on $L \times \{1, \ldots, r\}$ which satisfies

- (A-1) $(\alpha, i) \prec_F (\beta, j)$ implies $(\alpha + \gamma, i) \prec_F (\beta + \gamma, j)$ for any $\alpha, \beta, \gamma \in L$ and $i, j \in \{1, \ldots, r\}$;
- (A-2) if $\nu \mu < \nu' \mu'$, then $(\mu, \nu, \alpha, \beta, i)$ $\prec_F (\mu', \nu', \alpha', \beta', j)$ for any $\alpha, \beta, \alpha', \beta' \in N^n$, $\mu, \nu, \mu', \nu' \in N$ and any $i, j \in \{1, \ldots, r\}$;
- (A-3) $(\mu, \mu, \alpha, \beta, i) \geq_F (0,0,0,0, i)$ for any $\mu \in \mathbb{N}, \alpha, \beta \in \mathbb{N}^n, i \in \{1, \dots, r\}.$

Let P be a nonzero element of $(A_{n+1})^r$ which is written in the form (2.1). Then the *leading exponent* $lexp_F(P) \in L \times \{1, \ldots, r\}$ of P with respect to \prec_F is defined as the maximum element

 $\max\{(\mu, \nu, \alpha, \beta, i) \mid a_{\mu\nu\alpha\beta i} \neq 0\}$

with respect to the order \prec_{F} . The set of leading exponents $E_F(N)$ of a subset N of $(A_{n+1})^r$ is defined by

 $E_F(N) := \{ \exp_F(P) \mid P \in N \setminus \{0\} \}.$

Definition 2.1. A finite set G of generators of a left A_{n+1} -submodule N of $(A_{n+1})^r$ is called an FW-*Gröbner basis* of N if we have

$$E_F(N) = \bigcup_{P \in G} (\operatorname{lexp}_F(P) + L),$$

where we write

$$(\alpha, i) + L = \{(\alpha + \beta, i) \mid \beta \in L\}$$
for $\alpha \in L$ and $i \in \{1, \dots, r\}$.

Since the order \prec_F is not a well-order, the Buchberger algorithm ([5], [9], [6], [22]) for computing Gröbner bases does not work directly. In order to bypass this difficulty to obtain an algorithm of computing FW-Gröbner bases, we use the homogenization technique.

Definition 2.2. For λ , μ , ν , λ' , μ' , $\nu' \in N$ and α , β , α' , $\beta' \in N^n$, an order \prec_H on $L_1 \times \{1, \ldots, r\}$ with $L_1 := N \times L$ is defined so that we have $(\lambda, \mu, \nu, \alpha, \beta, i) \prec_H (\lambda', \mu', \nu', \alpha', \beta', j)$ if and only if one of the following conditions holds:

(1) $\lambda < \lambda'$;

(2) $\lambda = \lambda', \quad (\mu + l, \nu, \alpha, \beta, i) \prec_F (\mu' + l', \nu', \alpha', \beta', j)$ with $l, l' \in N$ such that $\nu - \mu - l = \nu' - \mu' - l'$;

(3) $(\lambda, \nu, \alpha, \beta, i) = (\lambda', \nu', \alpha', \beta', j), \mu < \mu'$ This definition is independent of the choice of l, l' in view of the condition (A-1).

Lemma 2.3. (1) \prec_H is a well-order.

(2) If $\nu - \mu - \lambda = \nu' - \mu' - \lambda'$, then $(\lambda, \mu, \nu, \alpha, \beta, i) \prec_H (\lambda', \mu', \nu', \alpha', \beta', j)$ if and only if $(\mu, \nu, \alpha, \beta, i) \prec_F (\mu', \nu', \alpha', \beta', j)$. **Definition 2.4.** An element P of $(A_{n+1}[x_0])^r$ of the form

$$P = \sum_{i=1}^{r} \sum_{\lambda,\mu,\nu,\alpha,\beta} a_{\lambda\mu\nu\alpha\beta i} x_{0}^{\lambda} t^{\mu} x^{\alpha} \partial_{t}^{\nu} \partial^{\beta} e_{i}$$

is said to be *F*-homogeneous of order *m* if $a_{\lambda\mu\nu\alpha\beta i} = 0$ whenever $\nu - \mu - \lambda \neq m$.

Definition 2.5. For an element P of $(A_{n+1})^r$ of the form (2.1), put $m := \min\{\nu - \mu \mid a_{\mu\nu\alpha\beta i} \neq 0$ for some $\alpha, \beta \in \mathbb{N}^n$ and $i \in \{1, \ldots, r\}$. Then the *F*-homogenization $P^h \in (A_{n+1}[x_0])^r$ of P is defined by

$$P^{h} := \sum_{i=1}^{r} \sum_{\mu,\nu,\alpha,\beta} a_{\mu\nu\alpha\beta i} x_{0}^{\nu-\mu-m} t^{\mu} x^{\alpha} \partial_{i}^{\nu} \partial^{\beta} e_{i}.$$

 P^{h} is F-homogeneous of order m.

Proposition 2.6. Let N be a left $A_{n+1}[x_0]$ -submodule of $(A_{n+1}[x_0])^r$ generated by F-homogeneous operators. Then there exists an H-Gröbner basis (i.e. a Gröbner basis with respect to \prec_H) consisting of F-homogeneous operators. Moreover, such an H-Gröbner basis can be computed by the Buchberger algorithm.

Theorem 2.7. Let N be a left A_{n+1} -submodule of $(A_{n+1})^r$ generated by $P_1, \ldots, P_d \in (A_{n+1})^r$. Let us denote by N^h the left $A_{n+1}[x_0]$ submodule of $(A_{n+1}[x_0])^r$ generated by $(P_1)^h, \ldots, (P_d)^h$. Let $\mathbf{G} = \{Q_1(x_0), \ldots, Q_k(x_0)\}$ be an H-Gröbner basis of N^h consisting of F-homogeneous operators. Then $\mathbf{G}(1) := \{Q_1(1), \ldots, Q_k(1)\}$ is an FW-Gröbner basis of N.

Let us denote by $\mathscr{D}_{K \times X} |_X$ the sheaf theoretic restriction of $\mathscr{D}_{K \times X}$ to $X = X \times \{0\}$. Then for a germ Q of $(\mathscr{D}_{K \times X} |_X)^r$ at $p \in X$, there exist $P \in \mathbb{C}$

 $(A_{n+1})^r$ and $a(t, x) \in K[t, x]$ with $a(0, p) \neq 0$ so that $Q = a(t, x)^{-1}P$. For each integer *m*, we put

$$F_{m}((\mathcal{D}_{K \times X}|_{X})^{r})_{p} := \{a^{-1}P \mid P \in F_{m}((A_{n+1})^{r}), a = a(t, x) \in K[t, x], a(0, p) \neq 0\}.$$

For a germ Q of $(\mathcal{D}_{K\times X}|_X)^r$ at p, its F-order ord_F(Q) is defined as the minimum $m \in \mathbb{Z}$ so that $P \in F_m((\mathcal{D}_{K\times X}|_X)^r)$. Put $m := \operatorname{ord}_F(Q)$ and let $a(t, x) \in K[t, x]$ and $P \in (A_{n+1})^r$ be as above. Suppose that P is written in the form (2.1). Then the formal symbol $\hat{\sigma}(Q)$ of Q is defined by

$$\hat{\sigma}(Q) = \hat{\sigma}_m(Q) := a(0, x)^{-1} \sum_{i=1}^r \sum_{\nu-\mu=m} a_{\mu\nu\alpha\beta i} t^{\mu} x^{\alpha} \partial_i^{\nu} \partial^{\beta} e_i.$$

Definition 2.8. Let *P* be a nonzero element of $(A_{n+1})^r$ (resp. $(\mathcal{D}_{K\times X}|_X)^r$) of F-order *m*. Then we define $\psi(P)(s) \in (A_n[s])^r$ (resp. $(\mathcal{D}_X[s])^r$), by

 $\hat{\sigma}_0(t^m P) = \psi(P)(t\partial_t) \text{ if } m \ge 0, \\ \hat{\sigma}_0(\partial_t^{-m} P) = \psi(P)(t\partial_t) \text{ if } m < 0.$

Theorem 2.9. We use the same notation as in Theorem 2.7. Let \mathcal{N} be the left $\mathfrak{D}_{K\times X}|_{X^-}$ submodule of $(\mathfrak{D}_{K\times X}|_X)^r$ generated by N. Let $\psi(\mathcal{N})$ be the left $\mathfrak{D}_X[s]$ -submodule of $(\mathfrak{D}_X[s])^r$ generated by the set $\{\psi(P)(s) \mid P \in \mathcal{N}, \operatorname{ord}_F(P) = 0\}$. Then $\psi(\mathcal{N})$ is generated by $\psi(Q_1(1)), \ldots, \psi(Q_k(1))$.

3. *b*-function of a *D*-module. Let \mathcal{M} be a left coherent $\mathcal{D}_{K \times X}|_{X}$ -module on *X*. We assume that a left A_{n+1} -submodule *N* of $(A_{n+1})^r$ is given explicitly so that $\mathcal{M} = \mathcal{D}_{K \times X}|_X \bigotimes_{A_{n+1}} \mathcal{M}$ holds with $\mathcal{M} := (A_{n+1})^r / N$. Set $\mathcal{N} := \mathcal{D}_{K \times X}|_X \bigotimes_{A_{n+1}} N \subset (\mathcal{D}_{K \times X}|_X)^r$. For each integer *m*, put

$$F_{m}(\mathcal{N}) := \mathcal{N} \cap F_{m}((\mathcal{D}_{K \times X} |_{X})^{r}),$$

$$F_{m}(\mathcal{M}) := F_{m}((\mathcal{D}_{K \times Y} |_{X})^{r})/F_{m}(\mathcal{N}).$$

Then
$$\{F_m(\mathcal{M})\}_{m \in \mathbb{Z}}$$
 is a filtration of \mathcal{M} satisfying
 $F_k(\mathcal{D}_{K \times X}|_X)F_m(\mathcal{M}) = F_{k+m}(\mathcal{M})$

for any $k, m \in \mathbb{Z}$. The *b*-function $b(s, p) \in K[s]$ of \mathcal{M} (with respect to the filtration $\{F_m(\mathcal{M})\}$) at $p \in X$ is the monic polynomial b(s, p) of *s* of the least degree, if any, that satisfies (3.1) $b(t\partial_t, p)(F_0(\mathcal{M})/F_{-1}(\mathcal{M}))_p = 0$.

If such b(s, p) exists, \mathcal{M} is called specializable along X at p. It is known that if \mathcal{M} is holonomic, then \mathcal{M} is specializable at any $p \in X([13], [14])$.

Let **G** be an FW-Gröbner basis of *N*, which can be computed by the homogenization and the Buchberger algorithm with a set of generators as input (Theorem 2.7). Put $\psi(\mathbf{G}) := \{\psi(P) \mid P \in$ **G**} and let $\psi(N)$ be the left $A_n[s]$ -submodule of $(A_n[s])^r$ generated by $\psi(G)$. Let \prec_D be a total order on $L_0 \times \{1, \ldots, r\}$ with $L_0 := N^{1+2n}$ which satisfies (A-1) with L replaced by L_0 and (A-4) $(\alpha, i) \succ_D (0, i)$ for any $\alpha \in L_0 \setminus \{0\}$ and $i \in \{1, \ldots, r\}$;

(A-5) $|\beta| < |\beta'|$ implies $(\mu, \alpha, \beta, i) \prec_D (\mu', \alpha', \beta', j)$ for any $\mu, \mu' \in \mathbb{N}, \alpha, \alpha', \beta, \beta' \in \mathbb{N}^n$, $i, j \in \{1, \ldots, r\}$.

Theorem 3.1. Under the above assumptions, let G_1 be a Gröbner basis of $\psi(N)$ with respect to \prec_p and put $G_0 := G_1 \cap K[s, x]^r$. Let \mathcal{T} be the $\mathcal{O}_X[s]$ -submodule of $(\mathcal{O}_X[s])^r$ generated by G_0 . Then \mathcal{M} is specializable at p if and only if $\mathcal{T}_p \cap$ $K[s]e_i \neq \{0\}$. If \mathcal{M} is specializable, then its bfunction b(s, p) is the monic polynomial of s of the least degree that satisfies $b(s, p)e_i \in \mathcal{T}_p \cap K[s]^r$ for any $i = 1, \ldots, r$.

Since we have a set of generators of \mathcal{T} , it is easy to compute $\mathcal{T} \cap K[s]^r$. This can be done, e.g., by primary decomposition of the K[s, x]submodule of $K[s, x]^r$ which is generated by G_0 (cf.[8]). Thus we obtain an algorithm of determining if \mathcal{M} is specializable at each point of X and of computing the *b*-function if that is the case.

4. Induced system. We retain the notation of the preceding section. The induced system of \mathcal{M} to X is the complex

$$\mathcal{M}_X^{\boldsymbol{\cdot}}: 0 \to \mathcal{M} \xrightarrow{\iota} \mathcal{M} \to 0$$

of left \mathscr{D}_X -modules, where the homomorphism t denotes the one defined by t(u) = tu for $u \in \mathcal{M}$. Let us write $\mathcal{M}_X := \mathcal{M}/t\mathcal{M}$. For each integer m, we put

$$\operatorname{gr}_{m}^{F}(\mathcal{M}) := F_{m}(\mathcal{M})/F_{m-1}(\mathcal{M}).$$

Lemma 4.1. Assume that $b(s) \in K[s]$ satisfies $b(t\partial_t) \operatorname{gr}_0^F(\mathcal{M}) = 0$. Then the homomorphism $t : \operatorname{gr}_{k+1}^F(\mathcal{M}) \to \operatorname{gr}_k^F(\mathcal{M})$ is bijective if $b(k) \neq 0$.

Proposition 4.2. Assume that $b(s) \in K[s]$ satisfies $b(t\partial_{s}) \operatorname{gr}_{0}^{F}(\mathcal{M}) = 0$. Put

$$k_{1} := \max\{k \in \mathbb{Z} \mid b(k) = 0\},\\k_{0} := \min\{k \in \mathbb{Z} \mid b(k) = 0\}.$$

Then $\mathcal{M}_X^{\boldsymbol{\cdot}}$ is quasi-isomorphic to the complex

 $0 \to F_{k_1+1}(\mathcal{M})/F_{k_0}(\mathcal{M}) \xrightarrow{t} F_{k_1}(\mathcal{M})/F_{k_0-1}(\mathcal{M}) \to 0$ of left \mathcal{D}_X -modules. In particular, $t: \mathcal{M} \to \mathcal{M}$ is bijective if $b(k) \neq 0$ for any $k \in \mathbb{Z}$.

Proposition 4.3. Assume that there exists $b(s) \in K[s]$ and $m \in N$ so that

$$b(t\partial_t)\partial_t^m \operatorname{gr}_0^F(\mathcal{M}) = 0$$

Assume, moreover, $b(k) \neq 0$ for any $k \in \mathbb{Z}$. Then the homomorphism $t: \mathcal{M} \to \mathcal{M}$ is injective.

No. 8]

Let P be an element of $F_m((A_{n+1})^r)$. Then we can write P in the form

$$P = \sum_{i=1}^{r} \sum_{k=0}^{m} P_{ik}(t\partial_{t}, x, \partial) \partial_{t}^{k} e_{i} + R$$

uniquely with $P_{ik} \in A_n[t\partial_i]$ and $R \in F_{-1}((A_{n+1})^r)$. Then we put

$$\rho(P, k_0) := \sum_{i=1}^r \sum_{k=k_0}^m P_{ik}(0, x, \partial) \partial_t^k e_i$$

for each integer k_0 with $0 \le k_0 \le m$.

Theorem 4.4. Assume that $b(s) \in K[s]$ satisfies $b(t\partial_t) \operatorname{gr}_0^F(\mathcal{M}) = 0$. Put

 $k_1 := \max\{k \in \mathbb{Z} \mid b(k) = 0\},\$

$$k_0 := \max\{0, \min\{k \in \mathbb{Z} \mid b(k) = 0\}\}$$

(We have $k_1 = m - 1$ and $k_0 = 0$ under the assumption of Proposition 4.3.) Let **G** be an FW-Gröbner basis of N. Then we have an isomorphism

$$\mathcal{M}_X \simeq (\bigoplus_{i=1}^{k} \bigoplus_{k=k_0}^{k_1} \mathcal{D}_X \partial_t^{k} e_i) / \mathcal{N}_Z$$

of left \mathcal{D}_X -modules, where \mathcal{N}_X is the left \mathcal{D}_X -module generated by a finite set

$$\{\rho(\partial_t^{j} P, k_0) \mid P \in G, j \in N, \\ k_0 \leq j + \operatorname{ord}_F(P) \leq k_1 \}.$$

Our next aim is to give an algorithm for computing the structure of the kernel $\mathscr{H}^{-1}(\mathscr{M}_X)$ of $t: \mathscr{M} \to \mathscr{M}$ as a left \mathscr{D}_X -module. For two integers $k_0 \leq k_1$, put

$$\tilde{\mathcal{D}}^{(k_0,k_1)} := \bigoplus_{i=1}^{r} \bigoplus_{k=k_0}^{k_1} \mathcal{D}_X[t\partial_i] S_k e_i$$

where we put $S_k := \partial_t^k$ if $k \ge 0$, and $S_k := t^{-k}$ if k < 0. Let P be a section of $(\mathcal{D}_{K \times X}|_X)^r$ of F-order m. Then we can write P uniquely in the form

$$P = \sum_{i=1}^{r} \sum_{k=-\infty}^{m} P_{ik}(t\partial_{i}, x, \partial) S_{k}e_{i}$$

with $P_{ik} \in (\mathscr{D}_{X}[t\partial_{i}])^{r}$. Then we define
 $\tau(P, k_{0}) := \sum_{i=1}^{r} \sum_{k=k_{0}}^{m} P_{ik}(t\partial_{i}, x, \partial) S_{k}e_{i}.$

Proposition 4.5. Let G be an FW-Gröbner basis of N. Then, for any integers $k_0 \leq k_1$, we have an isomorphism

 $F_{k_1}(\mathcal{M})/F_{k_0-1}(\mathcal{M}) \simeq \tilde{\mathcal{D}}^{(k_0,k_1)}/\mathcal{G}^{(k_0,k_1)}$ of left $\mathcal{D}_X[t\partial_t]$ -modules, where $\mathcal{G}^{(k_0,k_1)}$ is a left $\mathcal{D}_X[t\partial_t]$ -module generated by a finite set $\{\tau(S_tP, k_0) \mid P \in \mathbf{G}, j \in \mathbf{Z}, \mathbf{C}\}$

$$\tau(S_jP, k_0) \mid P \in \mathbf{G}, j \in \mathbf{Z}$$

$$k_0 \leq j + \operatorname{ord}_{\mathbf{F}}(P) \leq k_1 \}.$$

Let $\varphi: \tilde{\mathcal{D}}^{(k_0+1,k_1+1)} \to \tilde{\mathcal{D}}^{(k_0,k_1)}$ be a left \mathcal{D}_{X^-} module homomorphism defined by

$$\varphi\left(\sum_{i=1}^{r}\sum_{k=k_{0}}^{k_{1}}P_{i,k+1}(t\partial_{i}, x, \partial)S_{k+1}e_{i}\right)$$

 $= \sum_{i=1}^{r} \sum_{k=k_{0}}^{k_{1}} P_{i,k+1}(t\partial_{t} - 1, x, \partial) T_{k}e_{i}$

with

$$T_k := \begin{cases} S_k & (k \le -1) \\ t \partial_t S_k & (k \ge 0). \end{cases}$$

Theorem 4.6. Under the same assumptions as in Proposition 4.2, we have an isomorphism

 $\begin{aligned} &\mathcal{H}^{-1}(\mathcal{M}_{X}) \simeq \varphi^{-1}(\mathcal{G}^{(k_{0},k_{1})})/\mathcal{G}^{(k_{0}+1,k_{1}+1)} \\ as \ left \ \mathcal{D}_{X}[t\partial_{t}] - modules. \ Moreover, \ \varphi^{-1}(\mathcal{G}^{(k_{0},k_{1})}) \ / \\ \mathcal{G}^{(k_{0}+1,k_{1}+1)} \ is \ finitely \ generated \ as \ left \ \mathcal{D}_{X} - module. \end{aligned}$

The left $\mathcal{D}_{X}[t\partial_{t}]$ -module $\varphi^{-1}(\mathcal{G}^{(k_{0},k_{1})})$ can be easily computed by the same method as for computing ideal intersection and quotient in the polynomial ring by means of Gröbner basis (cf. [7]). Then by eliminating $t\partial_{t}$ also by means of a Gröbner basis, we get an algorithm of computing a presentation of $\mathcal{H}^{-1}(\mathcal{M}_{X})$ as a left \mathcal{D}_{X} -module.

5. Algebraic local cohomology. Let N be a left A_n -submodule of $(A_n)^r$ and put $M := (A_n)^r / N$ and $\mathcal{M} := \mathcal{D}_X \otimes_{A_n} M$. Let $f = f(x) \in K[x]$ be a polynomial and put $Y := \{x \in X \mid f(x) = 0\}$. Then the algebraic local cohomology group $\mathcal{H}^j_{[Y]}(\mathcal{M})$ has a structure of left \mathcal{D}_X -module and vanishes for $j \neq 0,1$ ([11]). Our purpose is to give an algorithm of computing $\mathcal{H}^j_{[Y]}(\mathcal{M})$ as a left \mathcal{D}_X -module.

Let \mathscr{I} be a left ideal of $\mathscr{D}_{K\times X}$ generated by operators t - f(x), $\partial_1 + (\partial f / \partial x_1) \partial_i$, ..., $\partial_n + (\partial f / \partial x_n) \partial_i$, and put $\mathscr{L} := \mathscr{D}_{K\times X} / \mathscr{I}$. Then by a method similar to that used by Malgrange [17], we get the following.

Theorem 5.1. We have isomorphisms $\mathscr{H}^{i}((\mathscr{M} \otimes_{\mathscr{O}_{X}} \mathscr{L})_{X}^{i}) \simeq \mathscr{H}^{i+1}_{[Y]}(\mathscr{M})$

of left \mathcal{D}_{x} -modules for j = -1, 0.

Let p_1 and p_2 be the projections of $X \times K \times X$ to X and to $K \times X$ respectively and put

 $\Delta := \{ (x, t, y) \in X \times K \times X \mid x = y \}.$ Then we have by [11]

 $\mathcal{M} \bigotimes_{\mathcal{O}_{X}}^{L} \mathcal{L} \simeq \mathcal{O}_{\Delta} \bigotimes_{\mathcal{O}_{X \times K \times X}}^{L} (\mathcal{M} \ \hat{\otimes} \mathcal{L})$

with

$$\mathscr{U} \,\widehat{\otimes} \mathscr{L} := \mathscr{D}_{X \times K \times X} \bigotimes_{p_1^{-1} \mathscr{D}_X \otimes p_2^{-1} \mathscr{D}_{K \times X}} (p_1^{-1} \mathscr{M} \bigotimes_K p_2^{-1} \mathscr{L}),$$

where \bigotimes denotes the left derived functor of \bigotimes in the derived category. In other words, $\mathcal{M} \bigotimes_{\mathcal{O}_X} \mathcal{L}$ coincides with the induced system of $\mathcal{M} \bigotimes \mathcal{L}$ along Δ . It is easy to see that $\mathcal{M} \bigotimes \mathcal{L}$ is specializable along Δ (in fact, Δ is non-characteristic for this module). Hence we can compute $\mathcal{M} \bigotimes_{\mathcal{O}_X} \mathcal{L}$ by applying Theorem 4.4 repeatedly with $k_0 = k_1 =$ 0. Combining this fact with Theorems 4.4, 4.6, 5.1, we obtain an algorithm of computing $\mathscr{H}^{j}_{[Y]}(\mathscr{M})$ for j = 0,1.

Theorem 5.2. Assume r = 1 and let $u \in \mathcal{M}$ be the residue class of $1 \in \mathcal{D}_X$. Let $\tilde{b}(s)$ be the *b*-function of $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}$ along X in the sense of Section 3 and let b(s) be the *b*-function for f and u defined by (1.1) both at a point p of Y. Then we have the following:

- (1) b(s) divides $\tilde{b}(-s-1)$;
- (2) if the homomorphism $f : \mathcal{M} \to \mathcal{M}$ defined by f(v) = fv for $v \in \mathcal{M}$ is injective at p, then we have $b(s) = \pm \tilde{b}(-s-1)$;
- (3) the homomorphism $f : \mathcal{M} \to \mathcal{M}$ is injective if and only if $\mathscr{H}^{-1}((\mathcal{M} \otimes_{\mathscr{O}_{X}} \mathscr{L})_{X}) = 0.$

Thus the algorithm for $\tilde{b}(s)$ provides an algorithm to compute the *b*-function for *f* and *u* in generic cases. Since $f : \mathcal{O}_X \to \mathcal{O}_X$ is injective, we have an algorithm to compute the Bernstein-Sato polynomial of an arbitrary *f*.

It is also possible (in generic cases) to compute $\mathscr{H}^{j}_{[Y]}(\mathscr{M})$ for algebraic set Y of codimension greater than one. For example, let $f_{1}(x)$, $f_{2}(x)$ be two polynomials and put

$$Y_i := \{x \in X \mid f_i(x) = 0\} \ (i = 1, 2), Y := Y_1 \cap Y_2.$$

Assume that $\mathscr{H}^{j}_{[Y_{1}]}(\mathscr{M}) = 0$ for $j \neq j_{0}$. Then we can compute

$$\mathscr{H}^{j}_{[Y]}(\mathscr{M}) = \mathscr{H}^{j-j_{0}}_{[Y_{2}]}(\mathscr{H}^{j_{0}}_{[Y_{1}]}(\mathscr{M}))$$

explicitly. The following computation was carried out by using Kan ([24]).

Example 5.3. Put $X = K^3$, $f_1 := x^2 - y^3$, $f_2 := y^2 - z^3$, and $Y := \{(x, y, z) \in X | f_1(x, y, z) = f_2(x, y, z) = 0\}$. Then we have $\mathcal{H}^j_{[Y]}(\mathcal{O}_X) = 0$ for $j \neq 2$ and

$$\mathscr{H}^{2}_{[Y]}(\mathscr{O}_{X}) \simeq \mathscr{D}_{X}/\mathscr{I},$$

where \mathscr{I} is the left ideal of \mathscr{D}_X generated by f_1, f_2 and

$$9x\partial_x + 6y\partial_y + 4z\partial_z + 30$$
$$9z^2y^2\partial_x + 6z^2x\partial_x + 4yx\partial_z$$

 $9z^{*}y^{*}\partial_{x} + 6z^{*}x\partial_{y} + 4yx\partial_{z}$. Let u_{j} be the residue class of f_{j}^{-1} in $\mathscr{H}_{[Y_{i}]}^{1}(\mathscr{O}_{X}) = \mathscr{O}_{X}[f_{j}^{-1}]/\mathscr{O}_{X}$ with $Y_{j} := \{(x, y, z) \mid f_{j}(x, y, z) = 0\}$. Then the *b*-function for f_{2} and u_{1} at 0 = (0,0,0) is

$$(s+1)\left(s+\frac{1}{12}\right)\left(s+\frac{5}{12}\right)\left(s+\frac{7}{12}\right)\\\left(s+\frac{5}{6}\right)\left(s+\frac{11}{12}\right)\left(s+\frac{7}{6}\right),$$

while the *b*-function for f_1 and u_2 at 0 is

$$(s+1)\left(s+\frac{7}{18}\right)\left(s+\frac{11}{18}\right)\left(s+\frac{13}{18}\right)\\\left(s+\frac{5}{6}\right)\left(s+\frac{17}{18}\right)\left(s+\frac{19}{18}\right)\left(s+\frac{7}{6}\right)\left(s+\frac{23}{18}\right).$$

References

- I. N. Bernstein: Modules over a ring of differential operators. Functional Anal. Appl., 5, 89-101 (1971).
- [2] J. E. Björk: Rings of Differential Operators. North-Holland, Amsterdam (1979).
- [3] A. Borel et al.: Algebraic D-Modules. Academic Press, Boston (1987).
- [4] J. Briançon, M. Granger, Ph. Maisonobe, and M. Miniconi: Algorithme de calcul du polynôme de Bernstein: cas non dégénéré. Ann. Inst. Fourier, 39, 533-610 (1989).
- [5] B. Buchberger: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math., 4, 374-383 (1970).
- [6] F. Castro: Calculs effectifs pour les idéaux d'opérateurs différentiels. Travaux en Cours, vol. 24, Hermann Paris, pp. 1-19 (1987).
- [7] D. Cox, J. Little, and D. O'Shea,: Ideals, Varieties, and Algorithms. Springer, Berlin (1992).
- [8] D. Eisenbud, C. Huneke, and W. Vasconcelos: Direct methods for primary decomposition. Invent. Math., 110, 207-235 (1992).
- [9] A. Galligo: Some algorithmic questions on ideals of differential operators. Lecture Notes in Comput. Sci., vol. 204, Springer, Berlin, pp. 413-421 (1985).
- [10] M. Kashiwara: B-functions and holonomic systems-Rationality of roots of b-functions. Invent. Math., 38, 33-53 (1976).
- M. Kashiwara: On the holonomic systems of linear differential equations. II. Invent. Math., 49, 121-135 (1978).
- M. Kashiwara: Vanishing cycle sheaves and holonomic systems of differential equations. Lecture Notes in Math., vol. 1016. Springer, Berlin, pp.134-142 (1983).
- [13] M. Kashiwara and T. Kawai: Second microlocalization and asymptotic expansions. Lecture Notes in Physics, vol. 126, Springer, Berlin, pp. 21-76 (1980).
- [14] Y. Laurent: Polygône de Newton et b-fonctions pour les modules microdifferentiels. Ann. Sci. Éc. Norm. Sup., 20, 391-441 (1987).
- [15] Y. Laurent and P. Schapira: Images inverses des modules différentiels. Compositio Math., 61, 229-251 (1987).
- [16] P. Maisonobe: D-modules: An overview towards effectivity. Computer Algebra and Differential Equations (ed. E. Tournier). Cambridge

No. 8]

University Press, pp. 21-55 (1994).

- B. Malgrange: Le polyôme de Bernstein d'une singularité isolée. Lecture Notes in Math., vol. 459, Springer, Berlin, pp. 98-119 (1975).
- [18] T. Oaku: Algorithms for finding the structure of solutions of a system of linear partial differential equations. Proceeding of International Symposium on Symbolic and Algebraic Computation (eds, J. Gathen, and M. Giesbrecht). ACM, New York pp. 216-223 (1994).
- T. Oaku: Algorithmic methods for Fuchsian systems of linear partial differential equations. J. Math. Soc. Japan, 47, 297-328 (1995).
- [20] T. Oaku: An algorithm of computing b-functions. Duke Math. J. (to appear).
- [21] M. Sato, M. Kashiwara, T. Kimura, and T. Oshima:

Micro-local analysis of prehomogeneous vector spaces. Invent. Math., **62**, 117-179 (1980).

- [22] N. Takayama: Gröbner basis and the problem of contiguous relations. Japan J. Appl. Math., 6, 147-160 (1989).
- [23] N. Takayama: An algorithm of constructing the integral of a module-an infinite dimensional analog of Gröbner basis. Proceedings of International Symposium on Symbolic and Algebraic Computation (eds, S. Watanabe and M. Nagata). ACM, New York, pp. 206-211 (1990).
- [24] N. Takayama: Kan: A system for computation in algebraic analysis. http://www.math. s. kobe-u. ac. jp (1991-).
- [25] T. Yano: On the theory of *b*-functions. Publ. RIMS, Kyoto Univ., **14**, 111-202 (1978).