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Introduction. Let C be a compact Riemann
surface of genus 2. Then C has six Wierstrass
points. If we normalize three of them into 0, 1
and oo, the complex curve C is defined by
Y X(X 1) (X 2) (X 2) (X 2).

Rosenhain’s normal form gives /1, 2. and 2a as
ratios of theta constants at the period matrix of
C (see Remark 1.3).

In this paper, we will give a similar formula
for the hyperelliptic curves over C of general
genus (Theorem 1.1). As an application of the
formula, we will give resolutions of a complex
algebraic equation as ratios of theta constants at
the period matrix of a suitable hyperelliptic
curve (Theorem 3.1).

Such formulas were given by H.Umemura in

[1] based on Thomae’s formula. But adding to
Thomae’s formula, we have Frobenius’ theta for-
mula [1, Theorem 7.1] and a criterion of
vanishing of theta constant at the period matrix
of the hyperelliptic curve [1, Corollary 6.7]. Us-
ing these results, we can simplify the formula
given by Umemura.

1 Main result. Let f(X) be a separable
monic polynomial with complex coefficients of de-
gree 2g + 1. Let al, a2," ", a2g+l be the roots of
f(X) 0. Let pg be the period matrix of
the hyperelliptic curve Y--f(X). Here gg de-
notes the Siegel upper half space of genus g. The
ordering of the roots of f(X) 0 determines the
classical basis of the first cohomology group of
the hyperelliptic curve. The basis in turn defines
the period matrix . A theta function is defined
by

0[M (, w)

exp2zc/-- 1
Zg

where w Ce and a (or’, or") Re are row
vectors with or’, c" Re, and (x, y) x" y.

Put
B {1, 2, 3,’", 2g + 1},
U= {1,3, 5,’", 2g+ 1}.

1
Define theta characteristics Tk- (, 7) -(k 1,2,..., 2g + 1) by_

-if, 0,’", 0

(2g+l
712-I 2’
(0, 0,"’, 0)) and

,o,-,o,...,o,
li ),2,2,0,"’,0.

For .any subset T of B, put

=(,’)= Z
kT

1 2g- Z(r/o (0, 0,’", 0)). For any subsets S, T of B,
let us denote by S T the symmetric difference
of S, T S T= S U T-- S N T. For the sake
of the notational simplicity, let us denote by

0[T] O[r/r] (D, 0)
the theta zero value at the period Y2 with a theta
characteristic Tr for any subset T of B.

Now our main result is
Theorem 1.1. For any disjoint decomposition

B V[__JW[__J{k,l, rn} with #V #W=g -1,
we have

ak a
=s(k;l,m) x

ak am

0[,., V U {k, m))] O[U (W U {k, m})]

s(k’l m) / 1 if k< l, rnor 1, m<k
--1 ifl<k<rnorrn<k<l.

The proof of Theorem 1.1 will be given in
the next section.
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Remark 1.2 (the case of g--1). In this
case B-- {1,2,3), U- {1,3) and V-- W- 0
in Theorem 1.1. Then we have a classical formu-
la

al--a.
0 (12, 0)

a a \vq[0, 0](, 0)
Remark 1.3 (the ease of g-2). In this

case B {1, 2, 3, 4, 5} and U-- {1, 3, 5}. Put-
ting

(k, l, m)- (!,3,2), (1,4,2), (1,5,2)
in Theorem 1.1, we have

al a
a az

o] (, o).o[o, o, o, o] (, o) \-,/. o[o, -, o,

-,0
a a4

a az

[o,o,o, 1
o, o, -, o, o] (9, o)

This is one of the seven hundred twenty possible
formulas of Rosenhain’s normal form of hypere-
lliptic curve of genus 2 [2].

2 Proof of Theorem 1.1. A relation be-
tween the theta zero values at 2 and the roots
{ax,..., a2g+l) is given by Thomae’s formula [1,
Th.8.1];

Proposition 2.1. For any subset S of B such
that # S is even and # U S) g + 1, we have

O[s] (9, 0) 4 C" (-- 1)#(vns) II (ak a) -.
kUoS,l UoS

Here C is a constant independent of S.
We have also a criterion of vanishing of the-

ta constants at the hyperelliptic period 2 [1,
Cor.6.7];

Proposition 2.2. For any subset S of B such
that # S is even, O[s] (Q, O) 0 if and only if
#(UoS) =/: g+ l.

For the hyperelliptic period Y2, we have the
following Frobenius’ theta relation [1, Th.7.1];

Proposition 2.3. For any wj Cg
and

QZg such that w, + wz + w3 + w4 0 and

b + b3 + b4 0 respectively, we have
4

II 0 [bfl (,
2g+ 4

Z (-- 1) k-1 II O[bj 4- rik] (9, w).
k=l j=l

Specializing this theta relation, we have

Lemma 2.4. For any o, - we have

O[a] (9, w) . OEB] (12, w)
2g+l

(-- 1)<2;’2(w’+")>+/-1"ag[O + r]j] (O, W)
j=l

x 0[/3 + r] (S2, w)
for all w Cg.

Proof. We have the following elementary re-
lations"
0[r] (12, w) (- 1) <"">. 0[r] (12, w),

and
0[r/ + r] (12, w) (-- 1)(2n’,r").Q[] ($2, W)

1 Z.for all r - and r Z Using these rela-

tions and Proposition 2.3, we have
0 [a] (9, w). 0 [/] (S2, w)

(-- 1) <-za’,za"> + <-2a’,za">

x 0 [a] (S2, w) 0 a] (t2, w)
x o[fl] (s2, w)O[- fl] (t2, w)

(-- 1) <-’,a">, + <-z’,2">

2g+

x Z (-- 1)J-10[a + r/j](/2, w)
j=l

x 0[- a + r] (9, w)O[ + r] (9, w)
x 0[- fl + ] (9, w).

We get the required formula by means of the
elementary relations given above.

Proof of Theorem 1.1. For any subset S of
B such that # S g + 1, we have
(2.1) O[U S]4= C’(- 1) #(v-s) II (a- a) -1

kS,lqS

by Proposition 2.1. Then for any disjoint decom-
position B= VI IVz I{k} such that #V=
# V. g, we have

(0[U (V1 U (k})]) 4

(2.2) 0[U (V u {k})]
(-- 1) -1 II (a,- a)(a,- a) -.

V,j V

In fact, put S-V U {k} or S= Vz U {k} in

(2.1), and substitute in the left hand side of (2.2).
Then many cancellations occur among the factors

a aj, and the relation
#(Ufq Vx) + #(U Vz) +g=k-l(mod2)
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gives the formula (2.2).
N(yw put V1 VU {/}, V2 WU {m} or

V1 VU {m}, V2= WU {/} in (2.2), and make
a ratio of them. Then we have

( ak a )(2.3) ak_ am

0[U ovu ()] 0[U (WO (k, m})]]
We have the following theta relation;

Lemma 2.5.
0[U (V U (k, l})]2"0[U (W U (k, l))]2

(-- 1)<2r’2(’7;’+7;;)>’O[U (V U {k, m})] 2

x O[U (W U {k, m})]
+ (-- 1)<2;’(:+=)>’0[U (V U {m, l})]

x O[U (W U {m, /})].
Proo Put

a vo(v,), fl vo(w,).
Lemma 2.4 with w 0 gives

o[a] (9, o)a[#] (, o)
2g+l(2.4) (-- 1)
=1

x 0[ + ] (9, 0).0[ + ] (9, 0) .
We have

a + vo(v{,)ou} (mod Z)
Uo(Wo{m})o{y} (mod Z2g),

and
(W U {m})o{j}

WU {m,j} ifj VU {k, l}
WU {m} {j} ifj VU {k, l}.

Then 0[a + y] (9, 0) 0 only if j V U {k, l}
by Proposition 2.2. Similarly 0[fl + y] (Q, 0) 0
only ifj WU {k, l}. Since V W- O, on the
right hand side of (2.4), only two terms for
j-- k or j l remain. On the other hand we have

and
(2V, 2V) k- 1 (mod 2).

We have the required formula.
Now calculate the left hand side of

; am am- ; 2"a_ am
by the formula (2.3), and use Lemma 2.5 twice.
Then we get

ak a (-- 1)(2,2(;’+)) X
ak am

O[U (VU (k, m})] O[U (WU {k,m})]]
and

<z;,.(;’+=)> [ 1 if k < l, rn or l, rn < k(- 1)
-1 ifl<k<morrn<k<l.

[}3 Application. In this section, we will
give resolutions of a complex algebraic equation
F(X) X + cX- + + c_X + c 0

(c C)
by theta constants.

First of all, we can suppose that F(0) #= 0
and F(1) 0 (otherwise, divide F(X) by X or X

1). If F(X) --0 has a multiple root, calculate
the (monic) greatest common divisor Fx(X) of
F(X) and its derivative F’(X) by the Euclidean
algorithm, and put F.(X)- F(X)/FI(X). Re-
peating the same procedure to each Fj(X), we
can decompose F(X) into a product of separable
polynomials. Then we suppose that F(X) is
separable. Finally we can suppose that the de-
gree n of F(X) is odd (otherwise replace F(X)
by (X-- c)F(X) with a complex number c e 0,1
such that F(c) 0).

Let us suppose that F(X)is a separable
polynomial of odd degree such that F(0) :/= 0 and
F(1) 0. Let %, a2,"" ", an be the roots of
F(X) 0. Put f(X) X(X- 1)F(X) and
a O, a 1, a2+j % (4" 1,2,"’, n).

Let /2 gpg (g (n + 1)/2) be the period mat-
rix of the hyperelliptic curve y2= f(X) sub-
ordinative to the ordering of the roots of f(X)
given above. Then we have

Theorem 3.1.

/ \2

f[ oto, 0,..., + +_

if j is odd,

[ ’(9[’--,-’, 0,’’’, O] (’, O)"oQ[l "l
1- Y]3 "F /’]2+j (.Q, ;

if j is even.

Proof. If j is odd, put k 1, 2 + j,
m 2and

V {3, 5, 7,..., 2g + 1} {2 + j},
W {4, 6, 8,..’, 2g}.

Ifjiseven, putk= 1, 1= 2 +j, m 2 and
V= {5, 7, 9,’", 2g + 1},

W (3, 4, 6, 8," ", 2g) (2 + j}.
Then Theorem 1.1 gives the formula of c--
al a2+j
a a2 [
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