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Introduction. When an elliptic curve E
over Q is given by a Weierstrass model like
y2= X + aX2 + bX + c, it is difficult to pro-
duce points of E(Q) with certainty except some
torsion points. To make such a plan work well,
we might restrict ourselves to certain family of
elliptic curves where the coefficients a, b, c are
determined by a rule. Suggested by the antique
congruent number problem for right triangles

([7], see also [1]), we obtained, using arbitrary
triangles, a family of infinitely many elliptic
curves each of which is provided with a ’canonic-
al’ nontorsion point Po (x0, Yo)([4], see also
[2]).

In this paper, we shall pursue the same
theme in a mere general setting whereby replac-
ing triangles by quadratic forms. As is stated in
the main theorem (1. 7), the canonical point P0
might possibly belong to a quadratic extension of
Q, and so we needed to call up the Hopf maps to
handle the matter, l)

1. The set W. Let k be a field of charac-
teristic q= 2, V a vector space of finite dimension
over k, q a nondegenerate quadratic form on V
and B a symmetric bilinear form corresponding
to q. Hence we have the relations

1
(1.1) B(u, v) - (q(u + v) q(u) q(v)),

q(u) B(u, u), u, v V.
To each pair w (u, v) V V, weset

1
(1.2) P B(u, v), Q, =- (B(u, v)

11 B(u, u) B(u, v)
q(u)q(v)) 4 B(v, u) B(v, v)

Note that
(1.3) P- 4Q, q(u)q(v).

1) We hope there is a better way to evade quadra-
tic extensions than employing Hopf maps. By the way,

the relationship between Hopf maps and elliptic curves

in this paper is logically irrelevant to the one described
in [5].

2) For an element a k we denote by a$ any once
of square roots of a. Here qv(u v) means (q(u v)).

Consider a plane cubic given by
(1.4) E y x + Px + Qx
The discriminant of (1.4)is A 16Q(P-
4Qw). Hence,

Ew is elliptic <=> A 4= 0
(B (u, v) q(u) q(v)) q(u) q(v)) 4= O.

In view of the last equality in (1.2), we have

(1.5) E is elliptic <=> U, V are independent
and nonisotropic.

Let us introduce the set
(1.6) W= {w= (u, v) Vx V, E is elliptic}.
(1.7) Theorem. For w (u, v) W, put

/2 (12Xo q(u- V)/4, Yo q V)(q(v) q(U))/8.2)

Then Po (:Co, o) belongs to Ew(k(qV(u- v))).
Proof Straightforward calculation using

(1.1), (1.2), (1.).
(1.8) Remark. If we want the point Po in E(k),
we need w (u, v) W such that q(u- v) is
a square. This calls upon us to use a Hopf map.

2. Hopf map h. Notation being the same
as in {}1, we assume further that V has a vector t

such that q(e) 1. We shall fix this vector once
for all and put U (kt) +/-, the orthogonal com-
plement of the line kt. For a vector v at + u,
a k, u U, wehave
(2.1) q(v) a + qv(u)
where qv denotes the restriction of q on U. Next,
let Z X@ Y be an orthogonal direct sum de-
composition of a nondegenerate quadratic space
(Z, qz) over k, and let qx, qY be the restrictions
of qz on X, Y, respectively. We assume that
there is a bilinear map fl:X X Y-- U such that
(2.2) qv(fl(x, y)) qx(x)qr(Y).
In this situation, we define the Hopf map h:Z---*
V by
(2.3) h(z) (qx(X) qr(y))e + 2fl(x, y),

z=x+yZ.
One verifies easily, using (2.1), (2.2), (2.3), that

2
(2.4) q(h(z)) qz(z).
The map h sends a sphere in Z to a sphere in V.
Now we introduce,a useful set:
(2.5) Z*= (z= (x,y) Z=X Y;
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x, y, s + h(z) are all nonisotropic}.
Then, for any z Z*, h(z)does not belong to
the line ks; in fact, if it did, we would have a re-
lation h(z)= as, a k, and hence, by (2.2),
(2.3), qx(x)qr(Y) qv(fl(x, y)) qv(O) O,
contradicting our assumption that x, y are both
nonisotropic. Therefore, if we put v- 4-h(z)
for z Z*, then w-- (e, v) V Vbecomes a
pair such that , v are independent and nonisot-
topic, i.e., Ew is elliptic by (1.5) and so w W
by (1.6). Since q(- v)- q(h(z))--qz(z), a
square, we obtain (2.6) below which is a refine-
ment of (1.7)
(2.6) Theorem. Let k be a field of characteristic
: 2, (V, q), (X, qz), (Y, qY) be nondegenerate
quadratic spaces over k, a vector in V such that
q() 1, (Z, qz) (X, qx) [ (Y, qr) and h" Z- V a Hopf map defined by (2.3). Then, for z (x,
y) Z* in (2.5), the pair w-- (, v), v-- +
h(z), defines an elliptic curve E, over k" Y X
+ PzY + QwX, with P 1 + qx(X) qf(y),
Q qx(x)qy(y).3) Furthermore, the point Po

(xo, Yo) belongs to E(k), where
2

Xo qz (z) /4
Yo qz (z) zqz(Z) + 2(qx(x) qr(y)))/8

(2.7) Remark. In the proof of (2.6), the follow-
ing list of values of inner product B in (1.1),
(1.2) is useful: B(, e) 1, B(, v) 1 +
qx(X) qr(Y), B(v, v) (1 + qx(X) qr(y))
+ 4qx(x)qr(y) 1 + 2(qx(X) qr(Y)) + (qx(X)
+ qr(y)) 2.

3. Classical Hopf maps over Q. We shall
consider a special case of the situation described
in (2.6). Namely, let k Q, V-Q3, (1, 0, 0),
X= Y= U= Q2,4), qx= qY= qv=fn, with

2fn(x) x + nx2, n Z, n :/: O, q(v) Vo + Vi
+ nv, fl(x, y) (xy + nxyz, xyz xzy) and

2h(x, y) (x + nx2- Yl ny, 2(xy + nx.y),
2 (xy xzy)).
Since Z* in (2.5) depends only on n, we may set
Z* Z,. Then, for z (x, y) Q*, we have
(3.1) z Z => f,(x) f,(y)(1 + 2fn(x) f(y))

+ (L (x) + L(y)) ) 0.
Notice that
(3.2) if f is positive (i.e., if n > 0) then z---- (x, y)

3) beg of readers to be generous with a crash of
notation X, Y. occurring in (2.6).

4) Here U means the orthogonal complement
of s (1, 0, 0) in V= Qs with respect to the quadratic
form q(v) v + vl + nvz.

ZnC=x:/= 0 and y=/: 0.
Since w s + h(z) is determined by z (x, y)

Zn, we may write Pz, Qz, Ez instead of P,
Qw, E, respectively. Thus, with a binary form
(3.3) fn(X) qx(X) x + nx2, n Z, n 4= O,
we can associate an elliptic curve:
(3.4) Ez" Y= X + PzX + Q,X,

P, 1 + f, (x) f, (y) Q, f (x) f, (y)
and a point Po (Xo, Yo) on it:

Xo (x) + f, (y)) /4,(3.5)
Yo fn (x) + fn (Y) ( (fn (x) + fn (Y)

+ 2(f.(x) f.(y)))/8.
From now on, we shall restrict ourselves to the

case where z is integral: z- (x, y) Z. There-
fore f.(x), f.(y) are integers, and so are P, Q,
z Zn f) Z. Now, for any a Z, put
(3.6) Z,,(a) (z Zn ( Z4"

P 1 + f. (x) f, (y) a}.
From (3.1), (3.4), (3.5), we have
(3.7) Z.(a) (z= (x, y)
f. (y) f. (x) + 1 a, f. (x) (f. (x) + 1 a)

)(4f2(x) + 4f(x)(1 a) + a =/= 0}.
(3.8) P= a, V= f, (x) (f, (x) + 1- a),

Xo (f,(x) + 1--2 a)
(3.9) Yo--(f,(x) +1--a)2

2

"ti:(x) + i.(x)(1 a) +a 1)"4
Therefore by the Nagell-Lutz theorem ([6], p. 56),
we obtain
(3.10) Theorem. Let fn(x) x A- nx2, n Z,
n =/: O. When a is even, for z (x, y) Z.(a) in

(3.7), the rank of the elliptic curve:

E" Y- X + aX- f.(x) f.(y)X
is positive and Po (Xo, Yo) in (3.9) is a nontor-
sion point on E(Q).

[}4. Comments and examples. The real
heart of our problem is of course the determina-
tion of the set Zn(a). We will reserve it for
another occasion. Here, we will consider some
illustrative examples.
(4.1) Let us seek elliptic curves of the form
yZ=x3_AX with AZ,A:/=0. Therefore
putting a 0 in (3.10), we find from (3.7),
Zn(O) (z= (x, y) Z’;fn(y) =fn(x) + 1,

L(x)L(y) 0).
If we choose x- (0,1), y- (1,1), then f,(x)
n,f,(y) n+ 1. Hence, for n#= 0,- 1, we
have z- (x, y) Zn(0), and (3.10) implies that
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all elliptic curves Ez" Y X n(n+ 1)X,n
4= 0, 1, have positive rank. For each n, a non- [1
torsion point Po (Xo, Yo) is given by

(4.2) As readers notice, we miss the elliptic [31

curve Y--Xa- 36X in the family of elliptic
[41curves in (4.1). However, this curve is a lucky

one because q(u- v) in (1.7) is a square and so
[5l

we do not need a help of the Hopf map. In fact,
for V Q2, q(u) ul + u., put u (3,0), v [6]
(0,4). Then q(u) --9, q(v) 16 and since B(u, v)

0, q(u v) q(u) + q(v) 25 52 a square. [7]
Therefore, by (1.7), Po (xo, go) belongs to the
curve E,,,, w (u, v)," y2 X (1/4) q(u) q(v)X
Xa- 36X with xo 25/4 Z. Thus, by

Nagell-Lutz, the rank of E is > 0.
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