The Maximal Finite Subgroup in the Mapping Class Group of Genus 5

By B. BATTSENGEL
Department of Mathematical Sciences, University of Tokyo
(Communicated by Heisuke Hironaka, M. J. A. , Sept. 12, 1996)

Abstract

The automorphism groups of compact Riemann surfaces of genus 5 are enumerated by A. Kuribayashi and H. Kimura. Among them, the group of largest order is a group of order 192. The Riemann surface with this automorphism group is unique, and it is realized as the modular curve $X(8)$ of level 8 . By utilizing this, we have explicit construction of the finite subgroup of order 192 in the Teichmuller group of genus 5 .

0. Introduction. The compactified modular curve $X(8)$ of level 8 corresponding to the principal congruence subgroup $\Gamma(8)$ of $\Gamma(1)=S L_{2}(\boldsymbol{Z})$ defines a compact complex algebraic curve of genus 5 . We are interested in the following problem. Its modulus $[X(8)]$ in the moduli space \mathcal{M}_{5} of genus 5 curves defines a (singular) point. \mathcal{M}_{5} is given as a quotient space $\Gamma_{5} \backslash \mathscr{T}_{5}$ of the Teichmüller space \mathscr{T}_{5} of genus 5 by the Teichmüller group Γ_{5} of genus 5 . Let $[X(8)]^{\sim}$ be a point of \mathscr{T}_{5} corresponding to a marking $\beta: \pi_{1}(X(8), *)$ $\simeq \pi_{5}$, here π_{5} is the surface group of genus 5 . Then by a Theorem of Kerckhoff ([1]), the stabilizer of $[X(8)]^{\sim}$ in Γ_{5} is isomorphic to the automorphism group $\operatorname{Aut}(X(8)) \cong S L_{2}(\boldsymbol{Z} / 8 \boldsymbol{Z}) /\{ \pm 1\}$. Our problem is to give an explicit description of this stabilizer in $\Gamma_{5}=\mathrm{Out}^{+}\left(\pi_{5}\right)$ in terms of canonical basis of π_{5}. The same problem for the Klein curve $X(7)$ of genus 3 have been solved by Matsuura using different ideas. ([5])
1. Some general facts. First we briefly describe the well-known construction of the canonical generators in the fundamental group of compact Riemann surface $X_{\Gamma}=\Gamma \backslash \mathfrak{S}^{*}$ corresponding to a Fuchsian group of first kind $\Gamma \subset$ $S L_{2}(\boldsymbol{R})$ ([3]). We are interested in the case when the action of Γ on \mathfrak{S} is fixed-point free. Choose a base point $\Gamma x_{0} \in X_{\Gamma}$, take as a fundamental domain of X_{Γ} the domain

$$
\mathscr{D}=\bigcap_{\gamma \in \Gamma}\left\{x \in \mathfrak{H} \mid d\left(x, x_{0}\right) \leq d\left(x, \gamma x_{0}\right)\right\}
$$

where d is $S L_{2}(\boldsymbol{R})$-invariant metric on \mathfrak{S}. Choose an orientation from left to right on the boundary of \mathscr{D}. Each side a of \mathscr{D} has its conjugate a^{-1}, let $\gamma_{a} \in \Gamma$ be a map $a \rightarrow a^{-1}$. Denote by $\delta(a)$, the homotopy class of the loop $\delta_{1} \delta_{2}$, where
δ_{1} is a path from x_{0} to the endpoint of a and δ_{2} is a bath from initial point of a^{-1} to x_{0}. Then for any relation $\Pi a_{i}^{ \pm 1}=1$ among boundary sides we have $\Pi \delta\left(a_{i}^{ \pm 1}\right)=1$ with the same exponents. Thus, we have $\delta\left(a^{-1}\right)=\delta(a)^{-1}$. There is another important relation between our loops: for a vertex P of \mathscr{D} let $a(P)$ be the boundary side starting at P, denote $\sigma(P)=\gamma_{a(P)}(P)$. The cycle of vertex P is a finite set of vertices $\left\{\sigma^{n}(P) \mid n \in N\right\}$. When the cycle of P is $\left\{P, \sigma(P), \ldots, \sigma^{k}(P)\right\}$, we have a relation $\Pi_{i=0}^{k} \delta\left(a\left(\sigma^{i}(P)\right)\right)=1$. After eliminating these relations from the fundamental relation, we will get a relation in exactly $2 g$ loops, which generate the fundamental group $\pi_{1}\left(X_{\Gamma}\right.$, Γx_{0}), here $g=$ genus $\left(X_{\Gamma}\right)$.

Suppose that, in the fundamental relation two sides a, b and their conjugates a^{-1}, b^{-1} occur in the order $\ldots a \ldots b \ldots a^{-1} \ldots b^{-1} \ldots$. That is, we can write the fundamental relation as $a W b X a^{-1} Y b^{-1} Z=1$, where W, X, Y, Z are blocks of sides. Firstly, we denote $e=W b X$, our relation transforms to $a e a^{-1} Y X e^{-1} W Z=1$ (gluing b on b^{-1}), secondly denote $d=X^{-1} Y^{-1} a$ then, we get a relation $d e d^{-1} e^{-1} W Z Y X=1$ (gluing a on a^{-1}). After g times repetitions of this procedure we find a generator system with relation $\Pi_{i=1}^{g}$ $\left[d_{i}, e_{i}\right]=1$, here $[a, b]$ is the commutator $a b a^{-1} b^{-1}$. ([3] section 7.4)

Let now $x_{1}, x_{2} \in \mathfrak{S}^{*}$ be two points such that $\Gamma x_{1}=\Gamma x_{2}=\Gamma x_{0}$. Then the path δ connecting x_{1}, x_{2} in \mathfrak{S}^{*} defines a closed path on $X_{\Gamma}(\mathbf{C})$, therefore its homotopy class in $\pi_{1}\left(X_{\Gamma}, \Gamma x_{0}\right)$ can be expressed in terms of our canonical generators. The following simple argument give us one such expression. Assume that, δ intersects with the
boundary side a of \mathscr{D} and a terminal point x of δ is lying outside of \mathscr{D}. Denote the arc of δ lying outside of \mathscr{D} by ν. Then by the transformation map γ_{a}, ν goes either to an union of arcs ν_{1}, ν_{2}, where ν_{1} is lying inside of \mathscr{D} while ν_{2} is not, or to a single arc lying entirely in \mathscr{D}. In the first case of course we have $d\left(\nu_{2}\right)<d(\nu)$, so after finite number of repetition of these procedure we will get the arcs all lying in \mathscr{D}, the union of which is Γ-equivalent to ν. Then homotopy class of δ is easily determined by the boundary sides of \mathscr{D}, and next we can express it in terms of canonical generators.
2. Generators of the fundamental group of $X(8)$. Now we treat the main result of this paper, the action of the automorphism group of the modular curve $X(8)=X_{\Gamma(8)}$ on its fundamental group. The curve $X(8)$ has a particular interest, because it has largest automorphism group among the curves of genus 5.([2])

As to the fundamental domain of $\Gamma(8)$ acting on the upper half-plane \mathfrak{S}, we can take a domain

$$
\begin{gathered}
\mathscr{D}=\{z \in \mathfrak{S}|0 \leq|\operatorname{Re}(z)| \leq 8,|c z+d| \geq 1 \\
\text { for all } \left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(8)\right\}
\end{gathered}
$$

By adding the cusps $\Gamma(8) \backslash \boldsymbol{P}_{\boldsymbol{Q}}^{1}$ to \mathscr{D} and gluing the boundaries we obtain the modular curve $X(8)$ of genus 5 . The boundaries of \mathscr{D} are identified as:

$$
\begin{aligned}
& {[\infty, 0] \leftrightarrow[\infty, 8],\left[k, \frac{1}{4}+k\right] \leftrightarrow\left[k,-\frac{1}{4}+k\right], } \\
& {\left[\frac{1}{4}+k, \frac{1}{3}+k\right] } \leftrightarrow\left[-\frac{9}{4}+k,-\frac{7}{3}+k\right] \\
& {\left[\frac{1}{3}+k, \frac{3}{8}+k\right] } \leftrightarrow\left[-\frac{7}{3}+k,-\frac{19}{8}+k\right], \\
& {\left[\frac{3}{8}+k, \frac{1}{2}+k\right] } \leftrightarrow\left[-\frac{27}{8}+k,-\frac{7}{2}+k\right],
\end{aligned}
$$

here $k=0, \ldots, 7$ and for the points P, Q on the real axis, $[P, Q]$ is the oriented semi-circle from P to Q in \mathfrak{S} centered on the real axis.

In general for any subgroup Γ of $\Gamma(1)$ of finite index acting freely on \mathfrak{S}, the fundamental group $\pi_{1}\left(X_{\Gamma}, *\right)$ is generated by modular symbols, that are loops connecting cusp points. ([4] Prop.1.4) Choose as a base point x_{0} the cusp $\Gamma(8) \frac{3}{8}$, then the fundamental group $\pi_{1}(X(8)$, x_{0}) is generated by the homotopy classes of sixteen semi circles
$a_{i}=\left[\frac{3}{8}+i, \frac{5}{8}+i\right], b_{j}=\left[\frac{5}{8}+2 j, \frac{11}{8}+2 j\right]$,
$c_{j}=\left[\frac{13}{8}+2 j, \frac{19}{8}+2 j\right] ;$
$i=1, \ldots, 8, j=1, \ldots, 4$. The cycles of vertices in \mathscr{D} will give us $a_{i+4}=a_{i}^{-1} ; i=1, \ldots, 4$ and b_{4} $=b_{1}^{-1} b_{2}^{-1} b_{3}^{-1}, c_{4}=c_{1}^{-1} c_{2}^{-1} c_{3}^{-1}$. Hence the fundamental relation in $\pi_{1}\left(X(8), x_{0}\right)$ reads now as $a_{1} b_{1} a_{2} c_{1} a_{3} b_{2} a_{4} c_{2} a_{1}^{-1} b_{3} a_{2}^{-1} c_{3} a_{3}^{-1} b_{1}^{-1} b_{2}^{-1} b_{3}^{-1} a_{4}^{-1} c_{1}^{-1} c_{2}^{-1} c_{3}^{-1}=1$. Let $\delta \in\left\{a_{i}, b_{j}, c_{j} \mid i=1, \ldots, 4, j=1, \ldots, 3\right\}$ and $\gamma \in \Gamma(1)$. By definition $\gamma \cdot \delta$ is the homotopy class of $t_{r}\left[x_{1}, x_{2}\right] t_{r}^{-1}$, here t_{r} denotes a path from $\frac{3}{8}$ to $r\left(\frac{3}{8}\right)$ fixed once for all and $x_{1}=$ $\gamma\left(u_{1}\right), x_{2}=\gamma\left(u_{2}\right)$ if δ is the homotopy class of [u_{1}, u_{2}]. We need only to find actions of the matrices $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ of $\Gamma(1)$ on our generators of the fundamental group, since they generate $\Gamma(1)$. Choose as t_{T} zero-path from $\frac{3}{8}$ to $\frac{3}{8}$, and $t_{J}=\left[-\frac{21}{8},-\frac{8}{3}\right]=\left[\frac{21}{8}, \frac{8}{3}\right]$.

Proposition 1. Let $a_{i}, b_{j}, c_{j} ; i=1, \ldots, 4$, $j=1, \ldots, 3$ are the generators of the fundamental group and the matrices $T, J \in \Gamma(1)$ are as above. We have

$T \cdot a_{1}=a_{2}$,	$J \cdot a_{1}=a_{2}^{-1} c_{3}$
$T \cdot a_{2}=a_{3}$,	$J \cdot a_{2}=b_{3}^{-1}$
$\dot{T} \cdot a_{3}=a_{4}$,	$J \cdot a_{3}=b_{2}$
$T \cdot a_{4}=a_{1}^{-1}$,	$J \cdot a_{4}=a_{3}^{-1} c_{1}^{-1}$
$T \cdot b_{1}=c_{1}$,	$J \cdot b_{1}=a_{3}^{-1} b_{1}^{-1} b_{2}^{-1}$
$T \cdot b_{2}=c_{2}$,	$J \cdot b_{2}=a_{3}$
$T \cdot b_{3}=c_{3}$,	$J \cdot b_{3}=a_{2}^{-1}$
$T \cdot c_{1}=b_{2}$,	$J \cdot c_{1}=a_{4}^{-1} b_{2}^{-1}$
$T \cdot c_{2}=b_{3}$,	$J \cdot c_{2}=c_{2}^{-1}$
$T \cdot c_{3}=b_{1}^{-1} b_{2}^{-1} b_{3}^{-1}$,	$J \cdot c_{3}=b_{3}^{-1} a_{1}$.

Proof. Here we explain only the first row. It is obvious that, $T \cdot a_{1}=a_{2}$ and $J \cdot a_{1}=\left[-\frac{21}{8},-\frac{8}{3}\right]$ $\left[-\frac{8}{3},-\frac{8}{5}\right]\left[-\frac{8}{3},-\frac{21}{8}\right]=\left[-\frac{21}{8},-\frac{13}{8}\right]$ $\left[-\frac{13}{8},-\frac{8}{5}\right]\left[\frac{8}{3}, \frac{21}{8}\right]$. By the transformation $\operatorname{matrix}\left(\begin{array}{cc}41 & 64 \\ 16 & 25\end{array}\right):\left[-\frac{13}{8},-\frac{3}{2}\right] \rightarrow\left[\frac{5}{2}, \frac{21}{8}\right]$ the semi-circle $\left[-\frac{13}{8},-\frac{8}{5}\right]$ is equivalent to $\left[\frac{21}{8}\right.$, $\left.\frac{8}{3}\right]$. Thus we get $J \cdot a_{1}=\left[-\frac{21}{8},-\frac{13}{8}\right]$ or in our notation $a_{2}^{-1} c_{3}$. The action to other generators
are obtained by same method.
We construct canonical generators using the procedure from the preceding section. Namely, by gluing the edges in the following order $b_{3}, c_{3} ; c_{1}$, $b_{2} ; b_{1}, c_{2}^{-1} ; a_{2}^{-1}, a_{1} ; a_{4}^{-1}, a_{3}$, we obtain following result.

Proposition 2. Homotopy classes of the following set of loops can be taken as a canonical generator system of the fundamental group $\pi_{1}\left(X(8), \Gamma(8) \frac{3}{8}\right):$
$d_{1}=\left[e_{5}, d_{5}\right] a_{4}^{-1}, \quad e_{1}=\left[d_{2}, e_{2}\right] a_{3}\left[d_{5}, e_{5}\right]$,
$d_{2}=a_{4} a_{1} c_{2}^{-1} a_{4}^{-1} b_{1} a_{3} c_{2} c_{1}, \quad e_{2}=a_{3} b_{2} a_{4} c_{2} a_{1}^{-1} a_{4}^{-1}$,
$d_{3}=a_{3} a_{4}^{-1} b_{1}, \quad e_{3}=a_{2} c_{2}^{-1} a_{3}^{-1}$,
$d_{4}=\left[e_{3}, d_{3}\right] a_{3} a_{4}^{-1} a_{2}^{-1}, \quad e_{4}=a_{1} a_{4} a_{3}^{-1}\left[d_{3}, e_{3}\right]$,
$d_{5}=b_{2} b_{1} a_{3} c_{2} c_{1} a_{4} b_{3}, \quad e_{5}=a_{2}^{-1} c_{3} a_{3}^{-1} b_{1}^{-1} b_{2}^{-1}$,
They satisfy a relation $\Pi_{i=1}^{5}\left[d_{i}, e_{i}\right]=1$.
Note that, reverse to these substitution one has:
$a_{1}=e_{4}\left[e_{3}, d_{3}\right]\left[e_{2}, d_{2}\right] e_{1} d_{1}$,
$a_{2}=d_{4}^{-1}\left[e_{3}, d_{3}\right]\left[e_{2}, d_{2}\right] e_{1} d_{1}$,
$a_{3}=\left[e_{2}, d_{2}\right] e_{1}\left[e_{5}, d_{5}\right]$,
$a_{4}=d_{1}^{-1}\left[e_{5}, d_{5}\right]$,
$b_{1}=d_{1}^{-1} e_{1}^{-1}\left[d_{2}, e_{2}\right] d_{3}$,
$b_{2}=\left[d_{5}, e_{5}\right] d_{1} e_{2}^{-1}\left[d_{2}, e_{2}\right] e_{2} d_{1}^{-1}\left[e_{5}, d_{5}\right] e_{4} d_{4} e_{3}\left[e_{2}, d_{2}\right]$ $\times e_{1} d_{1}$,
$b_{3}=\left[d_{5}, e_{5}\right] d_{1} e_{2}^{-1} d_{2}^{-1} e_{1}\left[e_{5}, d_{5}\right] d_{5}$,
$c_{1}=d_{1}^{-1} e_{1}^{-1}\left[d_{2}, e_{2}\right]\left[d_{3}, e_{3}\right] d_{4} d_{3}^{-1}\left[d_{3}, e_{3}\right] d_{4}^{-1}$
$\times e_{4}^{-1}\left[d_{5}, e_{5}\right] d_{1} d_{2}$, $c_{2}=\left[d_{5}, e_{5}\right] e_{1}^{-1}\left[d_{2}, e_{2}\right] e_{3}^{-1} d_{4}^{-1}\left[e_{3}, d_{3}\right]\left[e_{2}, d_{2}\right] e_{1} d_{1}$, $c_{3}=d_{4}^{-1}\left[e_{3}, d_{3}\right]\left[e_{2}, d_{2}\right] e_{1} d_{1} e_{5}\left[d_{5}, e_{5}\right] e_{1}^{-1}\left[d_{2}, e_{2}\right] e_{2}$ $\times d_{1}^{-1}\left[e_{5}, d_{5}\right] e_{4} d_{4} e_{3} d_{3}\left[e_{2}, d_{2}\right] e_{1}\left[e_{5}, d_{5}\right]$.
Using this formula and Proposition 1-2 we obtain a formula for the action of automorphism group on our canonical generators of $\pi_{1}(X(8)$, *).

Acknowledgements. The author heartily thanks to Prof. H. Shimizu, E. Horikawa, and T. Oda for giving him many advice and encouragement.

References

[1] S. P. Kerckhoff: The Nielsen realization problem. Ann. Math., 117, 235-265 (1983).
[2] A. Kuribayashi and H. Kimura: Automorphism groups of compact Riemann surfaces of genus five. J. Algebra, 134, 80-103 (1990).
[3] J. Lehner: Discontinuous Groups and Automorphic Functions. American Mathematical Society, Providence, Rhode Island (1964).
[4] Yu. I. Manin: Parabolic points and zeta-functions of modular curves. Math. USSR. Izvestiya, 36, 19-64 (1972).
[5] A. Matsuura: The automorphism group of the Klein curve in the mapping class group of genus 3 (preprint).

