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1. Introduction. The Theory of Mikusifis-
ki’s operational calculus is based on the Theorem
of Titchmarsh which guarantees that the ring of
the complexed-valued continuous functions with
convolution as product is an integral domain. He
treated a partial differential equation of two vari-
ables with constant coefficients as an ordinary
differential equation with coefficients in the con-
volution ring of one variable. But in order to
treat equations more symmetrically with respect
to several variables, we consider convolution
product of functions of several variables. Then, if
the differential operator of a partial differential
equation with constant coefficients can be fac-
tored into linear operators, we are able to treat
them just as in the case of one variable. To de-
velope the theory in several variable case, natu-
ral definition of convolution of two functions

f(tl,’" ", tin) and g(tl,’" ", tin) is

(f, g) (tx,. ., t,)

f(tl ul, ", tm um)g(u, ", u)du du,
since we can easily verify that the ring C of m
variables on [0, oo) m is a commutative ring with
this product. It is known ([1]) that this ring is an
integral domain. We define partial integration
operators and linear partial differential operators
based on this theorem and as applications we
consider linear differential equations with con-
stant coefficients.

2. The convolution quotients.
Theorem 1 (Generalized Titchmarsh’s

theorem). Let A be the convolution ring of con-
tinuous functions on Rm

which have support in [0,
oo) m. Then A has no divisors of zero.
The proof is in [1] Chapter VI.

To simplify notation we shall consider two
variable case. Therefore we denote by C the con-
volution ring of complex-valued continuous func-
tions z(x, y) with support in [0, oo) which are
continuously differentiable on (0, oo) with con-
tinuously differentiable z(x, O) and z(O, y). We

assume that all functions in this paper are in C
and a > 0 and c a complex number. For f(x, y),
g(x, y) in C, let f@g be the convolution of f and
g with respect to x, y, that is,

(f$ g) (x, y)

f0x f0du f(x u, y v) g(u, v) dr.

Then we can easily verify

f* g g.f,
f, (g, h) (f, g) h.

With the usual sum f(t) A- g(t), it is clear that
h, (f + g) h,f+ h,g.

We often omit ’$’ if it is clear from the context.
To stress that we consider a function f(x, y) as
an element of the ring C, we denote it by {f(x,
y)}. By the generalized Titchmarsh’s theorem, the
ring C is without zero-divisor. Let Q be the field
of total fractions of C and we shall call each ele-
ment of Q an inner operator and any other oper-
ator operating on C or Q an outer operator.
Functions in C may not necessarily be con-
tinuous on x and y axes, but we have

Proposition 2. The ring C has no divisors of

Proof Let f, gbe in C andfSg= 0. Then

l.f and l*gare inA. Since (lSf)*(l*g)
0, either 1 *f 0 or 1 * g 0. Differentiating 1

f= 0 or l.g= 0 by xand y, we have either

f(x, y) 0 or g(x, y) 0 for (x, y) in (0, )2.
Since f, g are continuous on [0, ) and with
support in [0, )2, we have f(x, y) 0 or g(x,
y) 0 identically.

Definition. We define the unit operator I
{1}

by I {1}"
We shall denote by h the operator defined by the
function {1}:

h {1}.
Then, for any natural number n, we have, by in-
duction on n,

n-1 n-1

(- 1)t(- 1)
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For any complex number c, the inner operator
[t] {a}/h is called a scalar operator.
As in one variable case, we can easily verify:

[cd + [#] [c + #],
[a] [fl] [aft],

[a] * {f(x, y)} {af(x, y)}.
We define the inner operator of "partial integra-
tion" hk by

hx {x}/h and hu {y}/h.
Therefore we identify [a] with a, especially
when it is a coefficient of a polynomial of oper-
ators.

Proposition 3. hx{f(x, y)} {f0?(u, y)du},
h, {f(x )} f(x v) dv

We shall verify the first formula. By Proposition
2, it is sufficient to show that

{z) (f(x )/ {1/ f(, ) d.

We can verify the equality by expressing both
sides according to the definition of involution
product and then differentiating both sides by x
and comparing them, since both sides are zero if
--0o

Proposition 4. hxh,- h.
By induction, we have
Proposition 5.

hxh -Definition. Let rx be an operator on C de-
fined by rx{f(x, V)} {f(0, y)}.

rv is defined similarly.
1 1

Let sx hx, su- hu’ dx sx- sxrx and dv
su suru.
Proposition 6. Let f be in C. Then

0
Ox {f(x, y) } dx{f(x, y) },

Oy {f(x’ y) } du{f(x, y) }.

Proof Since hx{fx(x, V)} {f(x, V)
f(0, y)), we have the result by multiplying sx to
both sides from the left.

From Proposition 2 and Proposition 6, we
have

Corollary. Let or, 15, 7 be complex numbers.
Then z(x, y) in C satisfying

Oz(x y) Oz(x y)+ + rz(x, y) -f(x, v)cr Ox Oy

is determined uniquely by the values on x- O,
y>_Oandy=O,x>_O.

From definitions, we can easily see:

rxr r,rx,
rxh hvrx,
Srx rxSu.

Lemma 8. Let z(x, y) be in C satisfying

Ox Oy z(x, y) 0 (x > O, y> 0).

Then we have z(x, y) z(O, x + y)
z(x + y, 0).

Proof Since both z(x, y) + z(y, x) and z(x
+ y, O) + z(O, x+ y) are solutions of the dif-
ferential equation and have the same values on

both axes, we have z(x, y)+ z(y,x)= z(x +
y, 0)+z(0, x+y) by the uniqueness of the
solution. Similarly we have z(x, y)z(y,x)-
z(O, x + y)z(x + y, 0). Therefore either z(x, y)

z(0, x+y) or z(x, y) z(x+y, 0). Since
z(x, y) is continuous on the line x + y- a and
can only take the two values z(0, a) and z(a, 0),
we know that z(x, y) z(O, a) z(a, 0).

Since a function in C remains in C and its
boundary condition on y-axis corresponds to the
condition on Y-axis if we change the variables X

cx, Y y (c > 0) or multiply it by the func-
tion of the form ecx, we have by Lemma 8"

Proposition 9. Let z(x, y) be in C satisfying- c- + c (z(x, y) } o (x > O, y > O).

Then we have z(x, y) e-CXz(O, crx + y)
e-Xz(ax + y, 0).
In particular, if z(O, y) 0 for all y > O, then
z(x, y) 0 identically.

Proposition 10. Let f(x, y) be in C. Then

fo
x

z(x, y) e y + cx- ru) du is the

unique solution of (Sx- crdv + c) {z(x, y)}
(f(x, y) )
with boundary condition z(O, y) 0 (y > 0).

Proof z(x, y)is a solution by direct cal-
culation and is unique by Proposition 9.

Definition. By Proposition 10, we can de-
fine

1
(f(x, y)}

Sx- cdv + c
x

(-x)

f(u,e y + rx cru) du

Lemma 11. Let z (x y) be a continuous func-
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tion on [0, co) , satisfying
(dx + crdy + c){z(x, y) } 0

and z(O, y) 0 for all y >-- O. Then we have z(x, y)
=OifO<_ax_y.

cx
Proof. By multiplying z(x, y) by e and by

the change of variables X ax, Y-y, we re-
duce the equation to the case of c= 1, c--0.
We want to show that, if (dx + dy)z(x, y) O(x
< y) with z(0, y) --0 for all y > 0, then z(x, y)

0 on the domain x < y. By the change of vari-
ables x= X, y=X+ Y, the domain y>x--> 0
corresponds to X>_ 0, Y-> 0. Let w(X, Y)
-z(X, X+ Y) and we shall show that w(X, Y)

0 identically on the first quadrant. Since

dxw-
Ow_ z z
8X- Ox-+--ff O, we have dxw(X, Y)

-Sx(W(X, Y)- w(O, Y))- O. Hence w(X, Y)

where s

Proof
have

w(0, Y)= z(0, Y)- o.
Proposition 12.

1 eaX+}
(Sx a) (s ) {

More generally we have
1

(s- a)...(s a) {e’X’+’"+x)’
(x)
(1}’ (1 _< j _< m).

Let It[ < 1 and Is[< 1. Then we

1 E . ts(1-- t) (1-- s) 1--0

Since this series converges in the neighbor-
hood of (0,0), we can substitute ohx, flh for
t, s. Since

(chx)J(flh)k- 1 {(cx)j (fly)k}j! k!
1 1 (e.X+}we have (1 crhx) (1 flh)

Multiplying h hxh to both sides, we have
1 (e,X+,}.(Sx a) (s, )

Definition. We define algebraic partial de-
rivations D, with respect to s(1 k m)by
D(a(x, x) ) (-- x, a(x, x) }.
As in one variable case, we can easily verify the
following:

Lemma 13. For each integer k (1 g k
m) we have

(1) If is free of x, then D, a O,
(2) D,(a + b) D,a + D,b,

(3) Dk (ab) (Dka) b + aDkb,

(4)

(5) Ds 1 and Dysk --0 (1" :/: k).
Remark. Lemma 13 shows that C[si,...,

Sin, D1,.. Din[ is the Weyl algebra.
Proposition 14.

jl jm
(S O1)J1+1... (Sm CEm)J.m+l

ealXl+ "+amXm}x2
Proo Operating D’-" D to both sides

of the equation in Proposition 12, we have the
equation.

Lemma 15. Let hi(x, y) max(y-- x, 0).
Then we have

su (e-x h(ax y) } (f(x, y)}

e (u, y ax + au)du
x(x-,o)

Proo First we assume y x. Then we
have

cxs{e- h(ax, y)}{f(x, y)}
--cxs, {f(x, y) } (e h (ax, y) }

s e-"d f(x- . - v)h(. v)dv

s, e-"du (v au) f(x u, y v) dv

(v= y- w)

s e-dUo (y- au- w)f(x- u, w)dw

{x -(y- au- w) w}sv e-C"du f(x- u, w)d
o OY

s e-du f(x- u, w)dw
0

e-"f(x-u,y-au)du (x--u= O

e-x etf(t, y- x + t)d

Now we consider the case 0 < y < ax. Then we
have
s, (e-*x h, (ax, )} (f(x, ))

-C.ds e h(. v)f(x- . - v)dv

s e-"d (v- )f(x- ,- v)dv

(w= --v
s, e-"d (-- w)f(z- . w)dw

0

s e-d O f(z . )dw
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s e f(x- u, w)dw
"0

e- e f(t, - ox + o#)dt

Theorem 16. Let f be in C. Then we have
1

(f(x, y) )
Sx S c

e
cx c

e f(u y ax+au) du
,x(-.o)

Proof Let w(x, y) be the right side of the
equation. Then it is clear that w(x, y) vanishes
both on x-axis and on y-axis. Hence sx dx and

s d. Routine calculation shows (dx T d
+ c)w(x, y) -f(x, y). Therefore w(x, y)

1
f(x,sx s c

1 (e-x (ax y)}Corollary. sx + s + c s h
Proof This follows from Lemma 15,

Theorem 16 and Proposition 2.
3. Applications.
Example 1. Find the solution of the equa-

tion

(dx + ad + c)(w(x, y)) ((x, y)} (a > 0).
with w(O, y), w(x, 0) and g(x, y) given.

Setting z(x, y) w(x, y) w(0,0) and
f(x, y) g(x, y) cw(O,O), the equation is
equivalent to
(dx + ad + c)(z(x, y)} (f(x, y)} (a > 0),

with z(0,0) 0.
Since dx- s- Sxrx and d s- sr, we

can rewrite the equation as

Sx (z(O, y) }Z--
Sx S C

+ as, (z(x 0)}
Sx Su C

1+
Sx + as, + c

(f(x’ y)}.

The first and the second terms of the right hand
side are determined uniquely by the values of z
on (0} [0, )and on [0, ) x {0} respec-
tively. The third term is the particular integral
which vanishes both on (0) x [0, ) and on [0,
) x (0}. The above equation shows that any
solution z with z(x, 0)--0 and z(0, y): 0 is
uniquely determined and is equal to the third
term. We can express each term in more familiar
forms" If y ax, then

Sx z(0, y)sx osy c
x

Sx e-cx ec" z(0, y- cx + cu)du

s z(O. - v)dv (x- .= v)

e (0, - x).
If N x, then

s z(0. )s + s + c

--CX C

Sx e e z(O,y-- ax+au)du

s e z(O. - v)dv (x- .- v)

d e z(O, - v)dv

0.
Therefore we have

z(0. )
Sx + S + C

e-CX z(0, y- ax), (y > ax)
0, (y g ax).

We have a similar formula for the second term.
To make the solution continuous on the boundary
y--x, we impose the condition z(0,0)= 0.
Therefore, by Theorem 16, we have
z(x, )

(e-z(0, y ax) } +
e- e f(, - x + )d,), ( > x),

Example . Let f(x, ) be in C. Then find
the solution of

with z(0, ) g() and > 0. The equation is
equivalent to

Hence
1

z(x, ) S s_ d+ c (g(y) }

1+ (f(x y) }
Sx- ady + c

x

Ox e-C*’ g(y + ou) du

+fo
x

(u-x)
e f(u, y + ax- au)du
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x
-cat u-x

e g(y + c) + e f(u, y + ax au) du

This gives the unique solution.
Example 3. Find the solution of

(d a dy) (z(x, y) } {f(x, y) }, with z(0,0) 0.
Assume that boundary conditions z(0, y)and
zx(O, y)are given. Then, in the region y >_ cx,
the solution is uniquely determined as follows.
Applying the formula in Example 2, we have
(dx + ady) {z (x, y) }

{Zx(0, y + cx) + az(O, y + ax)

fox+ f(u, y + cx- au)du}.

Now by the formula in Example 1, we have
z(x, y) z(O, y-

+ Zx(0, (y- cx + a.u) + au)du

+ c z(O, (- x + c) + a.)d

+ dv f(u, (y- ox + ov) + av- au)du.

Here we have

x

a z,(0, y cx + 2au)du

(z(0, y + ax) z(0, y- ax))/2.
Therefore we have finally

1 1
z(x, y) - z(O, y- ax) + - z(O, y + ax)

2x+ zx (0, y cx + 2cu) du

+ dv f(u, y- vex + 2av- eeu)du.

In the region y <--cx, we have also the solution
exchanging the role of x and y.
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