78 Proc. Japan Acad., 71, Ser. A (1995)

[Vol. 71(A),

A Note on the Extremality of Teichmiiller Mappings

By HUANG Xinzhong™’ and Hiromi OHTAKE**

(Communicated by Kiyosi ITO, M. J. A., April 12, 1995)

Introduction. For a hyperbolic Riemann
surface R, we denote by A,(R) the set of all
holomorphic quadratic differentials ¢ = ¢(2)dz”
on R, and set

AR =g 4®:(¢l,:=

<j;/li—2p|¢|p>1®< oo] for 1 < p < oo,

AR ={p € AHWR) | ¢l.:=

esssup g Az | 6| < oo},
where A, = A,(2) | dz| is the hyperbolic metric
on R with constant negative curvature — 4. For
simplicity, we often write || ¢ Iip,E instead of

(La=19r)".

A quasiconformal mapping f of a Riemann
surface R is called extremal if it has the smallest
maximal dilatation in the class @, of all quasicon-
formal mappings of R which are homotopic to f
relative to the border OR of R. An extremal map-
ping is called wuniquely extremal if there are no
other extremal mappings in €, Hamilton, Reich
and Strebel have characterized the extremality: a
quasiconformal mapping f is extremal if and only
if there is a sequence {@,}o_, in A,(R), |4, ], =

1, such that lim,_, fﬂ,gbn = ess sup, ! ty |,
R

where p, is the Beltrami coefficient of f (Strebel
[10]). Such a sequence is called a Hamilton sequ-
ence for f, and it is said to degenerate if it weakly
converges to 0.

A quasiconformal mapping whose Beltrami
coefficient has the form k¢_5/| ¢l, where 0 < k
<1 and ¢ € A,(R)\ {0}, is called a Teichmiiller
mapping corresponding to ¢. In the theory of ex-
tremal quasiconformal mappings, Teichmiiller
mappings play an important role. We know that
every Teichmiller mapping corresponding to
¢EA;(R) is uniquely extremal (Strebel [10]),
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but there are non-extremal, and extremal but not
uniquely extremal Teichmiiller mappings (Strebel
[8]). So it is expected to find conditions for a
holomorphic quadratic differential ¢ that guaran-
tees the Teichmiiller mapping corresponding to ¢
to be extremal or not. For the case R is the unit
disk D, some extremality theorems have been
proved, for instance, Sethares [7], Reich-Strebel
[6], Hayman-Reich [2] and one of the authors [3].
On the other hand, Strebel [9] has constructed an
example which shows that a lift to the universal
covering of an extremal Teichmiiller mapping of
a compact Riemann surface is not necessarily ex-
tremal, and recently McMullen [4] and one of the
authors [5] have generalized this.

1. In the present paper, we prove the fol-
lowing:

Theorem 1. Suppose that R is a hyperbolic
Riemann surface of finite analytic type, and that
T:R—R is an infinite sheeted regular (i.e. un-
bounded and wunvamified) covering from another
Riemann surface R to R which satisfies the condi-
tion

(%)  for any puncture a of R and any cusped

neighborhood V of a, there is an integer
m such that the restriction of ™ to any
connected component of T~ (V) is at most
m sheeted.
Then for ¥E€ A, (R), T#0, and ¢ € U | _,_.,
AL(R), the Tezchmuller mapping foxy corresponding
to the pull-back w0 € A (R) and the Teichmiil-
ler mapping frxg,, corresponding to T+ ¢ €
A7 (R) have the same Hamilton sequences. In par-
ticular, foxg is extremal if and only if s0 is frrgyy.

As an application of our Theorem 1 and
McMullen’s theorem, we have

Corollary 1. Let m: R— R be a covering as
. Theorem 1. If, moreover, T is nonamenable, then
for any ¥ A;(R\{0} and any ¢ € AJ(R),
1 <p<ooany lifts to the unit disk of the Teich-
miiller mapping of R corresponding to 7 T+ ¢ are
not extremal.

Proof. By McMullen’s the

theorem [4],
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Teichmiller mapping corresponding to U is
not extremal. Thus the Teichmiiller mapping cor-
responding to T+ ¢ is not extremal by
Theorem 1, hence its lifts to the unit disk are not
extremal.

For a Fuchsian group I' acting on the unit
disk D, define

AD,D:={pcAD) :1 p=¢forall rE .

Corollary 2. If I' is a torsion-free Fuchsian
group acting on D such that the Riemann surface
'\ D is compact, then for any ¥ € A; (D, N\ {0}
and any ¢ € AL(D), 1 < p < o, the Teichmiiller
self-mapping of D corresponding to ¥+ ¢ is not
extremal.

In particular, there is a non-extremal Teich-
wmiiller mapping which is nolt compatible with any
nontrivial Fuchsian groups.

To prove Theorem 1, we need some lemmas.
The hyperbolic distance between a, b € R is de-
noted by dg(a, b). For a € R and [ > 0, we set
Ala; D) :={b€ R :d,(b,a) <I}. The supre-
mum of all /> 0 for which A(a; ) is simply
connected is called injectivity radius at a, and de-
noted by inj rad(a).

First of all, by the mean-value theorem for
holomorphic functions and Holder's inequality,
we have

Lemma 1. Suppose that R is a hyperbolic
Riemann surface and the injectivity radius at @ €
R is not less than I. Then for all ¢ € A,(R) and
1 <p< oo,

G2l D@ < 1

m ” ¢ ”P,A(a;z)-

Lemma 2. Let7:R—R bea regular cover-
g of a hyperbolic Riemann surface R, and 1, be the
injectivity radius at a € R. Then for ¢ € A,(R)
and 0 < 1< 1,/2, we have
ol ey = el tanh I/tanh*(l,/2).

Proof Let G<€ r (@) and b€ A@G; D).
Since the injectivity radius at b is not less than
1,/2, we see Qi loD® <l¢ lasy 7 (&
tanh® (l,/2)) by Lemma 1. Integrating this on
A(@; ) and summing with respect to @, we
obtain Lemma 2.

Lemma 3. Let 7: R— R be a regular cover-
ing of a hyperbolic Riemann surface R, a be a punc-
ture of R, V be a cusped neighborhood of @ which is
expressed by {0 < |z| <1} in terms of a local pa-
mmeter z, and U, V be the decomposition of
7 (V) to its connected components. If there is an
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integer m such that the numbers of sheets of the
restrictions T | 7; are bounded by m, then we have
“ ¢ ||7r"((0<|z|<r}) < Cim) ” o) ||17’1/m Jor ¢ € A;(R)
and 0 < r < 1/3, where C(m) is a constant de-
pending only on m.

Proof. Take a local parameter { on V,» in
terms of which 7({) = {", where #n is the num-
ber of sheets of the covering 7 | 3,: V;— V. Since
¢ = ¢(0)dC’® has at most a simple pole at { = 0,
by applying the mean-value theorem to (@(Q),
we have |¢(Q)| < Com) lll5/1C] for
0<|¢]<@rs3)", from which the assertion
follows by the same way as in Lemma 2.

Proof of Theorem 1. Because o, U+
¢ € A,(R), all Hamilton sequences for f,+y and
for fy*,., if any, must degenerate. So it is enough
to show that . .

W tim [ ||| T~ EET

n—oo YR | z° T |7+ ¢
for any sequence {¢,)u, C AR, |¢,l=1,
which is weakly convergent to O.

Let € > 0 be a small number. Let a,,..., a,
be the punctures of R, and b,,..., b, € R be the
zeros of ¥, and take small cusped neighborhoods
Vi,..., Viof ay,...,a and small disks U,,...,
U, centered on b,,. .., b, so that they are mutual-
ly disjoint. Set N := U,_, V, YV U;_, U, and let
J be the minimum value of A;°| ¥| on R\ N. By
Lemmas 2 and 3, we may assume that || ¢, ||1,,,—1(N,
< ¢ for any #n. Take a large compact set K C R
so that Az°| ¢ | < &d outside K Uz~ '(N). By
Lemma 1, we can take such a K. Since |(/)|/
| z*¥| < e on R\(K U 77 (W), we have

T+ ¢
| 6, | —-E
AL | T ¢

f\(Kun‘l(N» E|¢"I+f21¢”'+f

325+2fK|¢,,|+2e.

Letting # — < and ¢ — 0, we obtain (1), and the
theorem is proved.

2. To prove (1), the condition (%) is essen-
tial. In fact, we can show

Theorem 2. Let R be a (not necessarily analy-
tically finite) Riemann surface with a puncture a, V
be a cusped meighborhood of a, 7 : R—Robea reg-
ular covering, and {V}; be the connected compo-
nents of = (V). If the numbers of sheets of the
coverings | y;: V;— V are unbounded, then there

2] ¢,
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exist ¢ € A,(R) and a sequence (¢}, < A(R),
| ¢, | = 1, such that for an arbitrary ¥ € A3 (R),
o<|7l.<1,

%
lim f—”—*—w—qs =0, but
n—o VR | 7" |
* _
lim fl_q_f_ic_b_ 6, =
no R | 1"+ ¢ |

Lemma 4. Let R be a Riemann surface, and a
€ R. If injrad(a@) = 21, 1> 1,:=1log(y2 + 1),
then there is ¢ € A1 (R) such that || ¢ ||1 =1,

() ”1R\A(a S 20 (1 — tanh® ),
¢ =27 — tanh® D?® ond(a; D).
Moreover, let b be a point on R for which
injrad(b) = [, and dg(b, @) = I’ + I, then
1o <1 — tanh® /.

Proof. Let w:D— R be a universal cover-
ing such that w(0) = a, I be its covering trans-
formation group. Then, by the standard argument
and Lemma 1, it is not difficult to see that ¢ :=
@) N, er N/ Z,er )2 ] has the prop-
erties in Lemma 4.

Proof of Theorem 2. We may assume that

={0< Izl < e} and A,(2) |dz| = 2]z|
Ilog | z| l) |dz| in terms of a local parameter
z. Since each ¥ = ¥(2)dz" has at most a simple
pole at a, we have A5 (@ |¥@ | < C,|z]
| log| z IIZ where C, is a universal constant.

Let {l,},_, be a sequence such that I, > I,
and lim /, = oo, and define a sequence of large
numbers {l}5_, so that 1 — tanh’l, < 27**7
(1 — tanh’® ln)z. Our assumption on the numbers
of sheets of the coverings implies that we can
take disks 4,:= A(a,; 1, + 1) in 7 '{C,]| z|
llog|z||? < 27”1 — tanh®1,)?}). We may
assume that these disks {4,},_, are mutually dis-
joint. Let ¢, € A,(R) be the holomorphic quadra-
tic differentials obtained by applying Lemma 4,
and set ¢:i= 2o 27"¢, € A;(R). Since Az
| n_*w-l < 2—(2n+2) /11—?2 | ¢n| and /21%21 Z/#ﬂ 2—k¢k I
<27 % ¢, on A,:= A(a,; 1), we have

| T+ @)/ 1 2T+ ¢l — ¢,/ ¢, || < 27"

Thus we see

T+
|1‘fz~e7|§*w_+$|¢"

S‘l—ln]—%’—[@
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T+
‘f\a IZ T+ | P

<1= [+ [lal+ [ l61=0

as B — O,

On the other hand, there is a constant C,
such that ||®||1V< C, ”@"m\v for any @ €
A,(R). Hence

' _‘ v )
Rl o*w| " LWT@R\R%
x f, 1Bt = €11 [ 1,0,

where Oz : A;(R) — A;(R) is the relative Poin-
caré series operator. This completes the proof.

<(C,+ 1)
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