Note on Siegel-Eisenstein Series

By Shoyu Nagaoka
Department of Mathematics, Kinki University
(Communicated by Shokichi Iyanaga, M. J. A., Dec. 12, 1995)

1. Siegel-Eisenstein series. In this paper, we will treat two types of Eisenstein series and give some remarks. Let \boldsymbol{H}_{n} be the Hermitian upper half space of degree n, namely, the domain consisting of all complex square matrices of size n such that the Hermitian imaginary part $\mathfrak{F}(Z):=(2 i)^{-1}\left(Z-\bar{Z}^{T}\right) \quad$ is positive definite. Here \bar{Z}^{T} is the transpose, complex conjugate matrix of Z. The Siegel upper half space $\boldsymbol{S}_{n}:=\{Z \in$ $\left.\boldsymbol{H}_{n} \mid Z^{T}=Z\right\}$ is a submanifold of \boldsymbol{H}_{n}. If $Z \in \boldsymbol{S}_{n}$, then $I(Z):=\mathfrak{F}(Z)$ is exactly equal to the imaginary part of Z. Consider an imaginary quadratic field K of discriminant d_{K}. The ring of integers in K is denoted by $\mathscr{O}=\mathscr{O}_{K}$. The Hermitian modular group of degree n associated with K is defined as:

$$
\begin{gathered}
\Gamma_{n}(K):=\left\{M \in S L_{2 n}(\mathscr{O}) \mid \bar{M}^{T} J_{n} M=\right. \\
\left.J_{n}, J_{n}=\left(\begin{array}{cc}
0_{n} & E_{n} \\
-E_{n} & 0_{n}
\end{array}\right)\right\} .
\end{gathered}
$$

The Siegel modular group of degree n is defined as $\Gamma_{n}:=S p_{n}(\boldsymbol{Z})$. Let $\left[\Gamma_{n}, k\right]$ (resp. $\left[\Gamma_{n}(K)\right.$, k]) be the vector space of holomorphic Siegel modular forms (resp. Hermitian modular forms) of weight k for $\Gamma_{n}\left(\right.$ resp. $\left.\Gamma_{n}(K)\right)$.
Let us consider the Eisenstein series of the following two types:

$$
\begin{aligned}
& \text { (SP Case) } \\
& E_{k}^{(n)}(Z, s):=\operatorname{det} I(Z)^{s} \sum_{\substack{\left(\begin{array}{c}
* \\
(2)\\
)
\end{array}\right) \in \Gamma_{n, 0} \backslash \Gamma_{n}}} \\
& \operatorname{det}(C Z+D)^{-k}|\operatorname{det}(C Z+D)|^{-2 s,}, Z \in S_{n} \\
& \text { (SU Case) } \\
& E_{k, K}^{(n)}(Z, s):=\operatorname{det}\left\{(Z)^{s} \sum_{\substack{(* *) \in \Gamma_{n}\left(K_{0}\right) \backslash \Gamma_{n}(K)}}\right. \\
& \operatorname{det}(C Z+D)^{-k}|\operatorname{det}(C Z+D)|^{-2 s}, Z \in \boldsymbol{H}_{n}
\end{aligned}
$$

Here k is an even integer and $\Gamma_{n, 0}$ (resp. $\Gamma_{n}(K)_{0}$) is the subgroup of Γ_{n} (resp. $\left.\Gamma_{n}(K)\right)$ consisting of the elements $M=\left(\begin{array}{ll}A & B \\ 0_{n} & D\end{array}\right)$ in $\Gamma_{n}\left(\right.$ resp. $\left.\Gamma_{n}(K)\right)$. It is known that $E_{k}^{(n)}(Z, s)$ (resp. $\left.E_{k, K}^{(n)}(Z, s)\right)$ is convergent for $\operatorname{Re}(s)>(n+1-k) / 2$ (resp. $\operatorname{Re}(s)>(2 n-k) / 2)$. Moreover, they can be continued as meromorphic functions in s to the
whole complex plane. The analytic properties of these Eisenstein series were successfully studied by Shimura [5] and Weissauer [6]. In fact, Shimura found the following results.

Theorem 1 (Shimura). (1) (SP Case) $E_{n-1}^{(n)}$ (Z, s) has at most a simple pole at $s=1$. The residue at $s=1$ is π^{-n} times an element f in $\left[\Gamma_{n}, \frac{n-1}{2}\right]$ with rational Fourier coefficients.
(2) (SU Case) $E_{n-1, K}^{(n)}(Z, s)$ has at most a simple pole at $s=1$. The residue at $s=1$ is π^{-n} times an element f in $\left[\Gamma_{n}(K), n-1\right]$ with rational Fourier coefficients.

Remark 1. The definition of Eisenstein series in [5] is slightly different from our definition. The Eisenstein series Shimura treated were $\operatorname{det} I(Z)^{-\frac{s}{2}} E_{k}^{(n)}\left(Z, \frac{s}{2}\right)$ (SP Case) and $\operatorname{det} \mathfrak{F}(Z)^{-\frac{s}{2}}$ $E_{k, K}^{(n)}\left(Z, \frac{s}{2}\right)$ (SU Case) in our notation.
2. A residue formula. Our purpose is to specify the modular forms f in Theorem 1. The first result is as follows:

Theorem 2. (1) For any even, positive integer k such that $k<\frac{n+1}{2}, E_{k}^{(n)}(Z, s)$ is holomorphic in s at $s=0$ and $E_{k}^{(n)}(Z, 0)$ defines an element of [$\left.\Gamma_{n}, k\right]$ with rational Fourier coefficients.
(2) Assume that the class number of K is 1 . For any even, positive integer k such that $k<n$, $E_{k, K}^{(n)}(Z, s)$ is holomorphic in s at $s=0$ and $E_{k, K}^{(n)}(Z, 0)$ defines an element of $\left[\Gamma_{n}(K), k\right]$ with rational Fourier coefficients.
A proof of (1) was already given in Weissauer [6]. Another proof is found by using results of Arakawa [1] and Mizumoto [3].

Here we must introduce the following notation:

$$
\begin{gathered}
\xi(s):=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s), \\
\xi\left(s ; \chi_{K}\right):=\pi^{-\frac{s}{2}}\left|d_{K}\right|^{\frac{s}{2}} \Gamma\left(\frac{s+1}{2}\right) L\left(s ; \chi_{K}\right),
\end{gathered}
$$

$$
\begin{gathered}
\xi_{K}(s):=\xi(s) \xi\left(s ; \chi_{K}\right)= \\
\pi^{-s}\left|d_{K}\right|^{\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) \zeta_{K}(s),
\end{gathered}
$$

where $\Gamma(s)$: the gamma function, $\zeta(s)$: the Riemann zeta function, $L\left(s ; \chi_{K}\right)$: the Dirichlet L-function associated with the Kronecker character $\chi_{K}, \zeta_{K}(s)$: the Dedekind zeta function of K.

Theorem 3. (1) (SP Case) Let m and n be integers satisfying $0 \leq m<n, n \equiv m(\bmod 4)$. Then the residue of $E_{\frac{n-m}{2}}^{(n)}(Z, s)$ at $s=\frac{m+1}{2}$ is

$$
\begin{aligned}
& \text { given by } \\
& \quad \operatorname{Res} E_{\frac{n-m}{2}}^{s=\frac{m+1}{2}}(Z, s)=(-1)^{\frac{n(n-m)}{4}} 2^{-2} \\
& \times \prod_{j=0}^{\frac{n-m-4}{4}}(m+1+2 j)!\left(\frac{n-m}{2}+2 j\right)! \\
& \times \frac{\xi\left(\frac{n-m}{2}\right)}{\xi\left(\frac{n+m}{2}+1\right)} \frac{\prod_{i=0}^{m-1} \xi(i+2)}{\prod_{l=0}^{m} \xi(n+m-2 l)} E_{\frac{n-m}{2}}^{(n)}(Z, 0) .
\end{aligned}
$$

(2) (SU Case) Assume that the class number of K is 1 . Let m and n be integers satisfying $1 \leq m$ $<n, n \equiv m \quad(\bmod 2)$. Then the residue of $E_{n-m, K}^{(n)}(Z, s)$ at $s=m$ is given by

$$
\begin{aligned}
& \operatorname{Res}_{s=m} E_{n-m, K}^{(n)}(Z, s)=(-1)^{\frac{(n+1)(n-m)}{2}} 2^{-1} \\
& \quad \times \prod_{j=0}^{\frac{n-m-2}{2}} \frac{(m+j)!\left(\frac{n-m}{2}+j\right)!}{j!\left(\frac{n+m}{2}+j\right)!} \\
& \times \frac{\xi\left(1 ; \chi_{K}\right) \prod_{i=0}^{m-2} \xi_{K}(i+2)}{\prod_{l=0}^{2 m-1} \xi\left(n+m-l ; \chi_{K}^{l}\right)} E_{n-m, K}^{(n)}(Z, 0)
\end{aligned}
$$

Here we understand that $\xi\left(s ; \chi_{K}^{m}\right)=\xi(s)$ if m is even $;=\xi\left(s ; \chi_{K}\right)$ if m is odd.
Using the theory of singular modular forms, we can get the following corollaries:

Corollary 1. (1) ($S P$ Case) If $0 \leq m<n$ and $n \equiv m+4(\bmod 8)$, then $E_{\frac{n-m}{2}}^{(n)}(Z, s)$ is holomorphic at $s=\frac{m+1}{2}$.
(2) (SU Case) Assume that the class number of K is 1 . If $1 \leq m<n$ and $n \equiv m+2(\bmod 4)$, then $E_{n-m, K}^{(n)}(Z, s)$ is holomorphic at $s=m$.

Corollary 2. (1) (SP Case)
$\operatorname{Res}_{s=1} E_{\frac{n-1}{2}}^{(n)}(Z, s)$

$$
=\pi^{-n}\left\{(-1)^{\frac{n-1}{4}} 2^{-2 n-3}(n+1)!(n+1)(n+3)\right.
$$

$$
\left.\times \frac{B_{2} B_{\frac{n-1}{2}}}{B_{\frac{n+3}{2}} B_{n+1} B_{n-1}} E_{\frac{n-1}{2}}^{(n)}(Z, 0)\right\}
$$

(2) (SU Case)
$\operatorname{Res} E_{n-1, K}^{(n)}(Z, s)=\pi^{-n}$

$$
\times\left\{-\frac{2^{1-2 n}\left|d_{K}\right|^{\frac{n-1}{2}}}{w_{K}} \frac{(n+1)!n}{B_{n+1} B_{n, \chi_{K}}} E_{n-1, K}^{(n)}(Z, 0)\right\}
$$

Here B_{n} and $B_{n, x}$ are the $n-t h$ Bernoulli number and the generalized Bernoulli number respectively, and w_{K} the order of the unit group of K.

Remark 2. We take the definition of \boldsymbol{B}_{n}, $B_{n, \chi}$ from [2], p. 89, p. 94 respectively.

Remark 3. In the special case $\boldsymbol{K}=\boldsymbol{Q}(i), n$ $=5$, the residue formula in (2) of Corollary 2 was already given in [4]. The Eisenstein series treated there is $\tilde{E}_{k, K}^{(n)}(Z, s):=\operatorname{det} \mathfrak{J}(Z)^{-\frac{s}{2}} E_{k, K}^{(n)}$ $\left(Z, \frac{s}{2}\right)$ in our notation. The residue formura in [4] was

$$
\operatorname{Res}_{s=2} \tilde{E}_{4, K}^{(5)}(Z, s)=\frac{\pi^{6}\left|d_{K}\right|^{-\frac{5}{2}} \operatorname{det} \mathfrak{F}(Z)^{-1}}{\Gamma(5) \zeta(6) L\left(5 ; \chi_{K}\right)} \theta^{(5)}(Z ; I)
$$

where $\quad \theta^{(5)}(Z ; I)=\sum_{X} \exp \left[\pi i \operatorname{tr}\left(\bar{X}^{T} I X Z\right)\right]$ is the theta series associated with lyanaga's matrix I (for the precise definition, see [4], p. 117). Since $\theta^{(5)}(Z ; I)=2^{-1} \tilde{E}_{4, K}^{(5)}(Z, 0)=2^{-1} E_{4, K}^{(5)}(Z, 0)$, we have
$\operatorname{Res}_{s=1} E_{4, K}^{(5)}(Z, s)=2^{-1} \operatorname{det} \Im(Z) \operatorname{Res}_{s=2} \tilde{E}_{4, K}^{(5)}(Z, s)$

$$
=2^{-1} \frac{(2!)^{2}}{4!} \frac{\xi\left(1 ; \chi_{K}^{s=2}\right)}{\xi(6) \xi\left(5 ; \chi_{K}\right)} E_{4, K}^{(5)}(Z, 0)
$$

This shows (2) in Corollary 2 in the special case. Finally, we note that there is a minor mistake in [4]. In the final formula (3) in [4](p. 117), the factor $\left|d_{K}\right|^{\frac{5}{2}}$ should be $\left|d_{K}\right|^{-\frac{5}{2}}$.

References

[1] T. Arakawa: Dirichlet series corresponding to Siegel's modular forms of degree n with level N. Tohoku Math. J. , 42, 261-286 (1990).
[2] T. Miyake: Modular Forms. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong (1989).
[3] S. Mizumoto: Eisenstein series for Siegel modular groups. Math. Ann., 297, 581-625 (1993).
[4] S. Nagaoka: On Hermitian Eisenstein series. Proc. Japan Acad., 70A, 115-117 (1994).
|5| G. Shimura: On Eisenstein series. Duke Math. J., 50, 417-476 (1983).
[6] R. Weissauer: Stabile Modulformen und Eisensteinreihen. Lect. Notes in Math., vol. 1219, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1986).

