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Let K be a local field of characteristic 0
with algebraically closed residue field of charac-
teristic p > 0. In this paper, an extension of K
means an extension of K contained in some fixed
algebraic closure K of K. Let Koo/K be a
extension with Galois group F Gal(Koo/K)
( Zp). Let Fn- F*" and Kn the subfield of Koo
fixed by F Denote by (F) the ring of integers

of an extension F/K. Especially put gn
(Kn) and (K). For a product R of exten-
sions of K, (R)denotes the product of the
rings of integers of the factors i.e. the unique
maximal order of R. For two finite extensions
F/K and F’/K, let Fi, i- 1,2,..., f be all the
composite field’s of the images of K-embeddings
of F into K (up to equivalence of proper embed-
dings of F above F’ in the sense of [41)) with F’.
Then we have F@KF’ IIFi. Put F,,- F
@K K,,.

We attach, to any finite extension E/K, the

U,,-semi-linear representation U(E (R),,) of
given by its Galois action on K,,. In [3] S. Sen
proved (probably in collaboration with J-M. Fon-
taine): Let E/K and E’/K be two finite Galois
p-extensions.E/K and E’/K are isomorphic if

and only if, for some sufficiently large m, the

U,,-semi-linear representations of F/F,, on the
additive groups (E(R),,) and (E,,) are iso-

morphic. In [1], F. Destrempes generalized this
theorem for two finite Galois extensions.

The purpose of this paper is to prove the
following theorem"

Theorem (cf. Theorem 2 of [3] and Theorem
1 of [1]). Let E/K and E’/K be two finite ex-
tensions. Assume that, for some sufficiently large
rn (el. Remark 1 of {}2), the O,,-semi-linear rep-

resentations of ELF,, on the additive groups

O(E(R) ,,)and O(E,,)are isomorphic. Then the
Galois closures of E/K and E’/K coincide and
deg E/K deg E’/K.

The author would like to express his hearty

thanks to Professor Keiichi Komats-u for his
advice and encouragements.

1. Preliminaries. For a finite extension
F/K, let r be a prime element of F and v the
valuation of F normalized by v(zc) 1. Espe-
cially put 7rn 7r/, and vn v,.

The following proposition is a generalization
of Proposition 6 of [3] and Proposition 6 of[l].

Proposition 1. Let E/K and E*/Kbe two
finite extensions. Then there is an integer s, inde-
pendent of m, such that

O(E(R),, @ E(R)m)/(O(E(R)m) ((mO(E*m))
is killed by zc,,. Here s depends only on one of
the two extensions E/K and E*/K.

Proof Let F/K be a finite extension. We
claim that, for sufficiently large m, Vm(6(FKm/
Km)) has an upper bound which depends only on
F/K, not on m. Here 6(FKm/Km) is the discri-

minant ideal of the extension FKm/Km. If F/K
is a finite Galois p-extension, the assertion was
proved in Lemma 1 of [1]. General case follows
from it by considering the Galois closure and us-

ing transitivity of discriminant. Hence we have
proved the proposition by Lemma 4 of [1].

The next elementary lemma is used in the
following.

Lemma. Let E/K be a finite extension and
F/K a finite Galois extension. Write E @ F
II E as the product of the composite fields. Then
deg E/K does not depend on i. Furthermore, if

degE/K and degF/K are powers of p, so is

deg E/K.
Proof Write E Klan]/(f) with an irre-

ducible monic polynomial f Klan]. We have E
@K F F[z]/(f) II F[z]/(f) if we decom-
pose f into the product II f of irreducible monic

polynomials in F[a] (cf. for example, Lemma 6,
Chap. 2, 5.2 of [2]). As F/K is a Galois exten-
sion, f’s are conjugate under Gal(F/K)-action
on the coefficients. Thus degEi/K= degf
does not depend on i.



216 S. YAMAGATA [Vol. 71(A),

Let F/K be a finite Galois p-extension with
Galois group H Gal(F/K). By an (F)-semi-
linear representation M of H, we mean a free
(F)-module of finite rank on which H acts
semi-linearly. We recall Sen’s theory on semi-
linear representations in [3]: For 0 4: x M
) F, let

OrdM x max{t Z xzc M}.
By a reduced basis of MH

we mean an -basis
{xi} of Mg

satisfying the condition OrdM(
cixi) Mini{OrdM cixi} whenever the ci’s belong
to K. The orders of the members of a reduced
basis of MH

are called the orders of M. We re-
mark that these numbers, together with their
multiplicities, are independent of the choice of
the reduced basis.

The following proposition is a generalization
of Proposition 7 of [3].

Proposition 2. Let M be the m-semi-linear
representation of F/F given by (a) M (E(R)m)
and (b) M- O(E @m E*(R)) where ElK is a
finite extension and E*/K is a finite Galois ex-
tension such that deg ElK and deg E*/K are
powers of p. Write E @: E* II Ei as the pro-
duct of the composite fields. Suppose pro>_ deg
E/K. (By Lemma deg E/K does not depend on
and is a power of p.) Then the orders of M are:

(a) {0, p’’, 2p-’,..., (p’-- 1)p-’} with mul-
tiplicity 1, where p"= deg ElK.

(b) {0, pm-h, 2pro-h,. (ph 1)pro-h} with mul-

(deg E /K) (deg E* /K) phwheretiplicity degE/K
deg E/K.

Proof. {a) Let E(R)m - II F where F is the
composite field 2i(E)Km of Km with the image of
a K-embedding 2i of E into K.

For x E (M @era K)r/rm, we have
--trm x M ca rtR (x) (Fi) for all i
ca VF,(2i(X)) >_ tvF,(Trm) for all

’ t < VF, (2 (x) deg F /E
VF,(rC,n) VF_.(X) degF/K

vg (x) deg E/K for all i.

Then for x E, OrdMX- pm-nvF.(X).
Thus we get the orders of M applying the

argument in the proof of Proposition 7 of [3].
(b) Since E.m@ I,:,,,E*(R)m " II(E) (R)m and

deg E/K is a power of p independ of i, applying
case (a) to E yields the orders in this case.

2. Proof of Theorem. We prove the fol-
lowing proposition by modifying the argument in
Theorem 2 of [3].

Proposition 3. Let E/K and E’/K be two
finite extensions. We assume that, for some suffi-
ciently large m, the Ore-semi-linear representa-
tions of F/Fm on the additive groups (E(R)m)
and O(E’,m) are isomorphic. Then, for any finite
Galois extension E*/K, we have degE/K

deg E/K where E @E* II E and E’ @
E*-IIE are the products of the composit
fields.

Proof Assume that t?(E.m) and t?(Em)
are isomorphic representations while, for some fi-
nite Galois extension E*/K, we have deg E/K
:/: degE/K, where E@E* IIEi and E’
@/E* IIE. From the isomorphy of repre-
sentations, we have deg E/K-deg E’/K. By
Lemma 3 of [1] the maximal tamely ramified sub-
extensions of E/K and E’/K coincide and put it
/. Let L*/K be the maximal tamely ramified
subextension of E*/K and put L =/_,L*. Since

E is the composite field 2i(E)E* *of E with the
image of a K-embedding 2 of E into R and/2/K
is a Galois extension, we have E D L and E
2(E) (E’L). That is, E is the composite field of
E*L with the image of the K-embedding of E
into /. Thus E is a factor of E @E*L. Also

E is a factor of E’ @ E*L. Hence we may take
E*L for E* and may assume that L L i.e.
L-L*. We remark that degE/L (resp. deg
E/L) is a power of p independ of (resp. j).

Put p deg Ei/L, p" deg E/L, p"
deg E// deg E’/[,,, pt deg E*/L and Lm
LKm(-L.m). In the following of this proof

we may suppose 2 < p without loss of generality.
We define the following O(Lm)-semi-linear rep-
resentations M D N of Gal(Lm/L) F/Fm"
M O(((E@ L) @ Lm) @z.(E* @z L))
( O(E(R)m@ E* m) as O-algebras)

N- ((E.,,) @O(L,,)) @e(t(E* @ Lm)
(- ?(E(R)m) @Om?(E*m) as 0-algebras).

Similarly we define M’ N’ by using E’ in-
stead of E.

Let So be the larger of the two numbers "s"
of Proposition i for the pairs ElK, E*/K and

sE’/K, E*/K. Put s so degL/K. Then 7cz
kills M/N and M’ /N’.

Write E @ L -’= II/ as the product of the
composite fields. Because rl( @z E*) (E
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(): L) (I. E* E (g E* - IIEi, the degree of
any factor of a ()L E* over L is equal to pa,
especially independent of t. Therefore the orders
of M (without taking into account their multipli-
cities) are 0, p’-a, 2p’-, (p--1)p’- by
Proposition 2 after taking LK,,,,/L for K,/K.
Also those of M’ are 0, p’-, 2p’-a,. (p--
1)p-Choose m so large that 2sp"+tdegJ/K
< p’. Applying the argument in the proof of
Theorem 2 of [3] to the (L,)-semi-linear repre-
sentations M, N, M’, N’, the assumption / <
gives a contradiction.

Proof of Theorem. Let (resp. ’) be the
Galois closure of E/K (resp. E’/K). Write E (g
’=--IIF and E’(K IIFj; where F is a
copy of E and F; is the composite field of E with
the image of a K-embedding of E’ into K. By ap-
plying Proposition 3 for E, E’, , we have deg
./K- deg Fi/K- deg F;/K. Thus
E’ and =3 ’. We also have ’ =) . Hence

Remark 1. From our proof "sufficiently
large m" in Proposition 3 admits a bound de-
pending only-on K, E* and deg E/K- deg E’
/K and also one depending only on K, E, E’
and degE*/K. Hence "sufficiently large m" in
Theorem admits a bound depending only on K
and one of the two fields E and E’.

Corollary. Let E/K be a finite Galois ex-

tension and E’/K a finite extension. Then E-
E’ if and only if, for some sufficiently large

the m-semi-linear representations of F/Im on
the additive groups (E) and ff(E’ are
isomorphic.

Remark 2. Our arguments and results hold
just as well in the case where K is a local field of
characteristic p > 0 with algebraically closed re-

sidue field if we consider only separable exten-
sions of K (cf. p. 268 of[l]).

Remark 3. If the residue field of K is per-
fect but not necessarily algebraically closed, we

still have the following result as Theorem 1D of
[1] by Corollary above: Let K,/K be a totally
ramified Zp-extension, E/K a finite totally rami-
fied Galois extension and E’/K a finite totally
ramified extension. Then EKu E’Ku for some

finite unramified extension Ku/K if and only if
the -semi-linear representations g(E(R),) and
(Em) of F/F,,, are isomorphic for some suffi-
ciently large m.
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