A Remark on Integral Representations Associated with *p*-adic Field Extensions

By Shuji YAMAGATA

Department of Mathematical Sciences, Tokyo Denki University (Communicated by Shokichi IYANAGA, M. J. A., Nov. 13, 1995)

Let K be a local field of characteristic 0 with algebraically closed residue field of characteristic p > 0. In this paper, an extension of K means an extension of K contained in some fixed algebraic closure \bar{K} of K. Let K_{∞}/K be a Z_{b} extension with Galois group $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ $(\cong \mathbb{Z}_p)$. Let $\Gamma_n = \Gamma^{p^n}$ and K_n the subfield of K_{∞} fixed by Γ_n . Denote by $\mathcal{O}(F)$ the ring of integers of an extension F/K. Especially put $\mathcal{O}_n =$ $\mathcal{O}(K_n)$ and $\mathcal{O} = \mathcal{O}(K)$. For a product R of extensions of K, $\mathcal{O}(R)$ denotes the product of the rings of integers of the factors i.e. the unique maximal order of R. For two finite extensions F/K and F'/K, let F_i , $i=1,2,\ldots,f$ be all the composite field's of the images of K-embeddings of F into \bar{K} (up to equivalence of proper embeddings of F above F' in the sense of [4])) with F'. Then we have $F \otimes_{\kappa} F' \cong \prod F_{i}$. Put $F_{\otimes m} = F$

We attach, to any finite extension E/K, the \mathcal{O}_m -semi-linear representation $\mathcal{O}(E_{\otimes m})$ of Γ/Γ_m given by its Galois action on K_m . In [3] S. Sen proved (probably in collaboration with J-M. Fontaine): Let E/K and E'/K be two finite Galois p-extensions.E/K and E'/K are isomorphic if and only if, for some sufficiently large m, the \mathcal{O}_m -semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic. In [1], F. Destrempes generalized this theorem for two finite Galois extensions.

The purpose of this paper is to prove the following theorem:

Theorem (cf. Theorem 2 of [3] and Theorem 1 of [1]). Let E/K and E'/K be two finite extensions. Assume that, for some sufficiently large m (cf. Remark 1 of §2), the \mathcal{O}_m -semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic. Then the Galois closures of E/K and E'/K coincide and $\deg E/K = \deg E'/K$.

The author would like to express his hearty

thanks to Professor Keiichi Komatsu for his advice and encouragements.

§1. Preliminaries. For a finite extension F/K, let π_F be a prime element of F and v_F the valuation of F normalized by $v_F(\pi_F)=1$. Especially put $\pi_n=\pi_{K_n}$ and $v_n=v_{K_n}$.

The following proposition is a generalization of Proposition 6 of [3] and Proposition 6 of [1].

Proposition 1. Let E/K and E^*/K be two finite extensions. Then there is an integer s, independent of m, such that

 $\mathcal{O}(E_{\otimes m} \otimes_{K_m} E_{\otimes m}^*)/(\mathcal{O}(E_{\otimes m}) \otimes_{\mathcal{O}_m} \mathcal{O}(E_{\otimes m}^*))$ is killed by π_m^s . Here s depends only on one of the two extensions E/K and E^*/K .

Proof. Let F/K be a finite extension. We claim that, for sufficiently large m, $v_m(\delta(FK_m/K_m))$ has an upper bound which depends only on F/K, not on m. Here $\delta(FK_m/K_m)$ is the discriminant ideal of the extension FK_m/K_m . If F/K is a finite Galois p-extension, the assertion was proved in Lemma 1 of [1]. General case follows from it by considering the Galois closure and using transitivity of discriminant. Hence we have proved the proposition by Lemma 4 of [1].

The next elementary lemma is used in the following.

Lemma. Let E/K be a finite extension and F/K a finite Galois extension. Write $E \otimes_K F \cong \Pi E_i$ as the product of the composite fields. Then $\deg E_i/K$ does not depend on i. Furthermore, if $\deg E/K$ and $\deg F/K$ are powers of p, so is $\deg E_i/K$.

Proof. Write $E \cong K[x]/(f)$ with an irreducible monic polynomial $f \in K[x]$. We have $E \otimes_K F \cong F[x]/(f) \cong \Pi[F[x]/(f_i)$ if we decompose f into the product $\Pi[f_i]$ of irreducible monic polynomials in F[x] (cf. for example, Lemma 6, Chap. 2, §5.2 of [2]). As F/K is a Galois extension, f_i 's are conjugate under Gal(F/K)-action on the coefficients. Thus $\deg E_i/K = \deg f_i$ does not depend on i.

Let F/K be a finite Galois p-extension with Galois group $H = \operatorname{Gal}(F/K)$. By an $\mathcal{O}(F)$ -semilinear representation M of H, we mean a free $\mathcal{O}(F)$ -module of finite rank on which H acts semi-linearly. We recall Sen's theory on semilinear representations in [3]: For $0 \neq x \in M$ $\bigotimes_{\mathcal{O}(F)} F$, let

Ord_M $x = \max\{t \in \mathbb{Z} \mid x\pi_F^{-t} \in M\}$. By a reduced basis of M^H we mean an \mathcal{O} -basis $\{x_i\}$ of M^H satisfying the condition $\operatorname{Ord}_M(\sum_i c_i x_i) = \operatorname{Min}_i\{\operatorname{Ord}_M c_i x_i\}$ whenever the c_i 's belong to K. The orders of the members of a reduced basis of M^H are called the orders of M. We remark that these numbers, together with their multiplicities, are independent of the choice of the reduced basis.

The following proposition is a generalization of Proposition 7 of [3].

Proposition 2. Let M be the \mathcal{O}_m -semi-linear representation of Γ/Γ_m given by (a) $M=\mathcal{O}(E_{\otimes m})$ and (b) $M=\mathcal{O}(E_{\otimes m}\otimes_{K_m}E_{\otimes m}^*)$ where E/K is a finite extension and E^*/K is a finite Galois extension such that $\deg E/K$ and $\deg E^*/K$ are powers of p. Write $E\otimes_K E^*\cong \Pi$ E_i as the product of the composite fields. Suppose $p^m\geq \deg$ E_i/K . (By Lemma $\deg E_i/K$ does not depend on i and is a power of p.) Then the orders of M are: (a) $\{0, p^{m-n}, 2p^{m-n}, \ldots, (p^n-1)p^{m-n}\}$ with multiplicity 1, where $p^n=\deg E/K$.

(b)
$$\{0, p^{m-h}, 2p^{m-h}, \ldots, (p^h-1)p^{m-h}\}$$
 with multiplicity $\frac{(\deg E/K)(\deg E^*/K)}{\deg E_i/K}$, where $p^h=\deg E_i/K$.

Proof. (a) Let $E_{\otimes m} \cong \prod F_i$ where F_i is the composite field $\lambda_i(E)K_m$ of K_m with the image of a K-embedding λ_i of E into \bar{K} .

For
$$x \in E = (M \otimes_{\mathcal{O}_m} K_m)^{\Gamma/\Gamma_m}$$
, we have $\pi_m^{-t} x \in M \Leftrightarrow \pi_m^{-t} \lambda_i(x) \in \mathcal{O}(F_i)$ for all $i \Leftrightarrow v_{F_i}(\lambda_i(x)) \geq t v_{F_i}(\pi_m)$ for all $i \Leftrightarrow t \leq \frac{v_{F_i}(\lambda_i(x))}{v_{F_i}(\pi_m)} = v_E(x) \frac{\deg F_i/E}{\deg F_i/K_m} = v_E(x) \frac{p^m}{\deg E/K}$ for all i .

Then for $x \in E$, $Ord_M x = p^{m-n} v_E(x)$.

Thus we get the orders of M applying the argument in the proof of Proposition 7 of [3].

(b) Since $E_{\otimes m} \otimes_{K_m} E_{\otimes m}^* \cong \Pi(E_i)_{\otimes m}$ and $\deg E_i/K$ is a power of p independ of i, applying case (a) to E_i yields the orders in this case.

§2. Proof of Theorem. We prove the following proposition by modifying the argument in Theorem 2 of [3].

Proposition 3. Let E/K and E'/K be two finite extensions. We assume that, for some sufficiently large m, the \mathcal{O}_m -semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic. Then, for any finite Galois extension E^*/K , we have $\deg E_i/K = \deg E_i'/K$ where $E \otimes_K E^* \cong \Pi E_i$ and $E' \otimes_K E^* \cong \Pi E_i'$ are the products of the composite fields.

Proof. Assume that $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic representations while, for some finite Galois extension E^*/K , we have $\deg E_i/K$ $\neq \deg E'_i/K$, where $E \otimes_K E^* \cong \prod E_i$ and E' $\bigotimes_{\kappa} E^* \cong \prod E'_{i}$. From the isomorphy of representations, we have $\deg E/K = \deg E'/K$. By Lemma 3 of [1] the maximal tamely ramified subextensions of E/K and E'/K coincide and put it $ilde{L}$. Let L^*/K be the maximal tamely ramified subextension of E^*/K and put $L = \tilde{L}L^*$. Since E_i is the composite field $\lambda_i(E)E^*$ of E^* with the image of a K-embedding λ_i of E into $ar{K}$ and $ilde{L}/K$ is a Galois extension, we have $E_i \supset L$ and $E_i =$ $\lambda_i(E)(E^*L)$. That is, E_i is the composite field of E^*L with the image of the K-embedding of E into \bar{K} . Thus E_i is a factor of $E \otimes_K E^*L$. Also E'_i is a factor of $E' \otimes_{\kappa} E^* L$. Hence we may take E^*L for E^* and may assume that $L^* \supseteq \tilde{L}$ i.e. $L = L^*$. We remark that $\deg E_i/L$ (resp. \deg E'_i/L) is a power of p independ of i (resp. j).

Put $p^{\lambda} = \deg E_i/L$, $p^{\mu} = \deg E_j'/L$, $p^n = \deg E/\tilde{L} = \deg E'/\tilde{L}$, $p^t = \deg E'/L$ and $L_m = LK_m (\cong L_{\otimes m})$. In the following of this proof we may suppose $\lambda < \mu$ without loss of generality. We define the following $\mathcal{O}(L_m)$ -semi-linear representations $M \supset N$ of $\operatorname{Gal}(L_m/L) \cong \Gamma/\Gamma_m$:

resentations
$$M\supset N$$
 of $\mathrm{Gal}(L_m/L)=I/I_m$:
$$M=\mathscr{O}(((E\otimes_K L)\otimes_L L_m)\otimes_{L_m}(E^*\otimes_L L_m))$$

$$(\cong\mathscr{O}(E_{\otimes m}\otimes_{K_m}E_{\otimes m}^*) \text{ as }\mathscr{O}\text{-algebras}),$$

$$N=(\mathscr{O}(E_{\otimes m})\otimes_{\mathscr{O}_m}\mathscr{O}(L_m))\otimes_{\mathscr{O}(L_m)}\mathscr{O}(E^*\otimes_L L_m)$$

$$(\cong\mathscr{O}(E_{\otimes m})\otimes_{\mathscr{O}_m}\mathscr{O}(E_{\otimes m}^*) \text{ as }\mathscr{O}\text{-algebras}).$$
Similarly we define $M'\supset N'$ by using E' instead of E .

Let s_0 be the larger of the two numbers "s" of Proposition 1 for the pairs E/K, E^*/K and E'/K, E^*/K . Put $s=s_0\deg L/K$. Then $\pi^s_{L_m}$ kills M/N and M'/N'.

Write $E \otimes_{\kappa} L \cong \Pi \tilde{E}_{\alpha}$ as the product of the composite fields. Because $\Pi(\tilde{E}_{\alpha} \otimes_{L} E^{*}) \cong (E^{*})$

 $\bigotimes_K L) \bigotimes_L E^* \cong E \bigotimes_K E^* \cong \prod E_i$, the degree of any factor of $\tilde{E}_\alpha \bigotimes_L E^*$ over L is equal to p^λ , especially independent of α . Therefore the orders of M (without taking into account their multiplicities) are 0, $p^{m-\lambda}$, $2p^{m-\lambda}$, ..., $(p^\lambda - 1)p^{m-\lambda}$ by Proposition 2 after taking LK_∞/L for K_∞/K . Also those of M' are 0, $p^{m-\mu}$, $2p^{m-\mu}$, ..., $(p^\mu - 1)p^{m-\mu}$.

Choose m so large that $2sp^{n+t} \deg \tilde{L}/K < p^m$. Applying the argument in the proof of Theorem 2 of [3] to the $\mathcal{O}(L_m)$ -semi-linear representations M, N, M', N', the assumption $\lambda < \mu$ gives a contradiction.

Proof of Theorem. Let \hat{E} (resp. \hat{E}') be the Galois closure of E/K (resp. E'/K). Write $E \otimes_K \hat{E} \cong \Pi \ F_i$ and $E' \otimes_K \hat{E} \cong \Pi \ F_j'$, where F_i is a copy of \hat{E} and F_j' is the composite field of \hat{E} with the image of a K-embedding of E' into \bar{K} . By applying Proposition 3 for E, E', \hat{E} , we have $\deg \hat{E}/K = \deg F_i/K = \deg F_j'/K$. Thus $\hat{E} = F_j' \supset E'$ and $\hat{E} \supset \hat{E}'$. We also have $\hat{E}' \supset \hat{E}$. Hence $\hat{E} = \hat{E}'$.

Remark 1. From our proof "sufficiently large m" in Proposition 3 admits a bound depending only on K_{∞} , E^* and $\deg E/K = \deg E'/K$ and also one depending only on K_{∞} , E, E' and $\deg E^*/K$. Hence "sufficiently large m" in Theorem admits a bound depending only on K_{∞} and one of the two fields E and E'.

Corollary. Let E/K be a finite Galois extension and E'/K a finite extension. Then E=E' if and only if, for some sufficiently large m,

the \mathcal{O}_m -semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E_{\otimes m}')$ are isomorphic.

Remark 2. Our arguments and results hold just as well in the case where K is a local field of characteristic p > 0 with algebraically closed residue field if we consider only separable extensions of K (cf. p. 268 of [1]).

Remark 3. If the residue field of K is perfect but not necessarily algebraically closed, we still have the following result as Theorem 1D of [1] by Corollary above: Let K_{∞}/K be a totally ramified Z_p -extension, E/K a finite totally ramified Galois extension and E'/K a finite totally ramified extension. Then $EK_u = E'K_u$ for some finite unramified extension K_u/K if and only if the \mathcal{O}_m -semi-linear representations $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ of Γ/Γ_m are isomorphic for some sufficiently large m.

References

- [1] F. Destrempes: Generalization of a result of Shankar Sen: Integral representations associated with local field extensions. Acta Arith., 63(3), 267-286 (1993).
- [2] S. Iyanaga et al.: The Theory of Numbers. North-Holland Publishing Company. Amsterdam, New York, Oxford (1975).
- [3] S. Sen: Integral representations associated with p-adic field extensions. Invent. Math., **94**, 1-12 (1988).
- [4] A. Weil: Basic Number Theory. Springer-Verlag, Berlin, Heidelberg, New York (1967).