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Let K be a local field of characteristic O
with algebraically closed residue field of charac-
teristic p > 0. In this paper, an extension of K
means an extension of K contained in some fixed
algebraic closure K of K. Let K./K be a Z,-
extension with Galois group I'= Gal(X,_,/K)
(2 Z,). Let I, = I'""" and K, the subfield of K.,
fixed by I,. Denote by O(F) the ring of integers
of an extension F/K. Especially put 0, =
O(K,) and 0 = O(K). For a product R of exten-
sions of K, O(R) denotes the product of the
rings of integers of the factors i.e. the unique
maximal order of R. For two finite extensions
F/K and F'/K, let F;, i =1,2,..., f be all the
composite fields of the images of K-embeddings
of F into K (up to equivalence of proper embed-
dings of F above F’ in the sense of [4])) with F".
Then we have FQyF' =1l F, Put Fg, =F
R K,

We attach, to any finite extension E /K, the
0,,-semi-linear representation O(E g ,,) of I'/T,,
given by its Galois action on K,,. In [3] S. Sen
proved (probably in collaboration with J-M. Fon-
taine): Let E/K and E’/K be two finite Galois
p-extensions.E /K and E’/K are isomorphic if
and only if, for some sufficiently large m, the
0,-semi-linear representations of I'/I,, on the
additive groups O(Eg,) and O(E%g,) are iso-
morphic. In [1], F. Destrempes generalized this
theorem for two finite Galois extensions.

The purpose of this paper is to prove the
following theorem:

Theorem (cf. Theorem 2 of [3] and Theorem
1 of [1)). Let E/K and E’/K be two finite ex-
tensions. Assume that, for some sufficiently large
m (cf. Remark 1 of §2), the 0,,-semi-linear rep-
resentations of I'/I, on the additive groups
O(E g ,) and O(E’,) are isomorphic. Then the
Galois closures of E/K and E’/K coincide and
deg E/K = deg E'/K.
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8§1. Preliminaries. For a finite extension
F/K, let mp be a prime element of F and vy the
valuation of F normalized by vz(7;) = 1. Espe-
cially put 7, = mg,_ and v, = vg .

The following proposition is a generalization
of Proposition 6 of [3] and Proposition 6 of [1].

Proposition 1. Let £E/K and E* /K be two
finite extensions. Then there is an integer s, inde-
pendent of m, such that

O(E o, @k, Egm)/(O(E,) @, O(ES,))
is killed by =,. Here s depends only on one of
the two extensions E /K and E* /K.

Proof. Let F/K be a finite extension. We
claim that, for sufficiently large m, v, (6(FK,,/
K,,)) has an upper bound which depends only on
F/K, not on m. Here 0(FK,,/K,,) is the discri-
minant ideal of the extension FK,, /K, If F/K
is a finite Galois p-extension, the assertion was
proved in Lemma 1 of [1]. General case follows
from it by considering the Galois closure and us-
ing transitivity of discriminant. Hence we have
proved the proposition by Lemma 4 of [1].

The next elementary lemma is used in the
following.

Lemma. Let E/K be a finite extension and
F/K a finite Galois extension. Write E Q@ F =
IT E, as the product of the composite fields. Then
deg E; /K does not depend on #. Furthermore, if
deg E/K and deg F/K are powers of P, so is
deg E; /K.

Proof. Write E = Klx] /(f) with an irre-
ducible monic polynomial f € K[x]. We have E
Ry F = Flx] /(f) =1 Flx] /(f) if we decom-
pose f into the product II f; of irreducible monic
polynomials in Flx] (cf. for example, Lemma 6,
Chap. 2, §5.2 of [2]). As F/K is a Galois exten-
sion, f;’s are conjugate under Gal(F/K)-action
on the coefficients. Thus degE,/K = deg f;
does not depend on 1.
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Let F'/ K be a finite Galois p-extension with
Galois group H = Gal(F/K). By an O(F)-semi-
linear representation M of H, we mean a free
O(F)-module of finite rank on which H acts
semi-linearly. We recall Sen’s theory on semi-
linear representations in [3]: For 0 #Fx € M
Quim F, let

Ord, x = max{t € Z| xn;' € M).

By a reduced basis of M” we mean an O-basis
{x} of M" satisfying the condition Ord, (3,
¢;x;) = Min,;{Ord,, c;x;} whenever the ¢,’s belong
to K. The orders of the members of a reduced
basis of M are called the orders of M. We re-
mark that these numbers, together with their
multiplicities, are independent of the choice of
the reduced basis.

The following proposition is a generalization
of Proposition 7 of [3].

Proposition 2. Let M be the 0,,-semi-linear
representation of I'/T, given by (a) M = O(Eg,,)
and (b) M = O(E o,, ®K E%,) where E/K is a
finite extension and E™* /K is a finite Galms ex-
tension such that deg E/K and deg E*/K are
powers of p. Write E ®y E* = 1 E, as the pro-
duct of the ecomposite fields. Suppose p” = deg
E,/K (By Lemma deg E,;/ K does not depend on
7 and is a power of p.) Then the orders of M are:
(@ {0, p™ ", 2p™"7", ..., @®"— 1Dp"™"} with mul-
tiplicity 1, where p” = deg E/K.

(b) {0, p”7 ", 2p™7", ..., @" — 1)p™ "} with mul-

.. (degE/K)(degE*/K) -
tiplicity degE,/K where p =
deg E,/K.

Proof. (a) Let Eg,, = I F; where F; is the

composite field A;(E)K,, of K,,
a K-embedding A, of E into K.
Forz € E = MR, K,)"'™ we have
T, x € Mo m,'A,(x) € O(F) for all i

< v, (14;(2) 2 tog (n,) for all ¢

with the image of

Up (/1,(1«')) deg F,/E _
=Ty~ W deg FUK,

m

vg (1) _deng/K for all 1.
Then for x € E, Ord,x = p" "0, (x).
Thus we get the orders of M applying the
argument in the proof of Proposition 7 of [3].
(b) Since Eg, ® g, Egn = I(E) g, and
deg E,/K is a power of p independ of 7, applying
case (a) to E, yields the orders in this case.

S. YAMAGATA

[Vol. 71(A),

§2. Proof of Theorem. We prove the fol-
lowing proposition by modifying the argument in
Theorem 2 of [3].

Proposition 3. Let E/K and E’'/K be two
finite extensions. We assume that, for some suffi-
ciently large m, the 0,-semi-linear representa-
tions of I'/I,, on the additive groups O(Eg,,)
and O(E’%,,) are isomorphic. Then, for any finite
Galois extension E*/K, we have deg E,/K
= deg E;/K where EQ E* =1 E, and E’ Q4
E*=1I E] are the products of the composite
fields.

Proof. Assume that O(Eg,) and O(E%y,,)
are isomorphic representations while, for some fi-
nite Galois extension E*/K, we have deg E,/K
+ deg E;/K, where EQ E*=11E, and E’
Rx E* = II E]. From the isomorphy of repre-
sentations, we have deg E/K = deg E'/K. By
Lemma 3 of [1] the maximal tamely ramified sub-
extensions of E/K and E’/K coincide and put it
L. Let L*/K be the maximal tamely ramified
subextension of E*/K and put L = LL*. Since
E, is the composite field A,(E)E™ of E* with the
image of a K-embedding A; of E into K and L/K
is a Galois extension, we have E; D L and E; =
A,(E)(E*L). That is, E, is the composite field of
E*L with the image of the K—embedding of E
into K. Thus E, is a factor of E®, E*L. Also
E’ is a factor of E’ ®, E*L. Hence we may take
E *L for E™ and may assume that L*DL e
L= L* We remark that deg E,/L (resp. deg
E;/L) is a power of p independ of 7 (resp. J).

Put p'=degE,/L, p* =degE,/L, p" =
deg E/L =degE’/L,p' =degE*/L and L,
= LK, (= Lg,). In the following of this proof
we may suppose A < g without loss of generality.
We define the following O(L,,)-semi-linear rep-
resentations M D N of Gal(L,,/L) =I/T,,

M= 0((EQ®,L ®,_L ) X, (E ®, L ))
(=2 0(Eg,, O, EZ,) as - algebras)
= (O0(Eg,) Oy, @(L ) Qpa,, O((E*®,L,)
(— O0(Egy) ®,, O(Eg,) as O-algebras).
Similarly we define M” DO N’ by using E’
stead of E.

Let s, be the larger of the two numbers 7s”
of Proposition 1 for the pairs E/K, E*/K and
E'/K,E*/K Put s=s,degL/K. Then w;,
kills M/N and M’/ N".

Write E®, L = I E, as the product of the
composite fields. Because II(E ,®,E*) = (E
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QL) @, E* = EQ®,E* =11 E, the degree of
any factor of E,®, E* over L is equal to ",
especially independent of a. Therefore the orders
of M (without taking into account their multipli-

cities) are 0, p" 7, 2p"7%, ..., @' — Dp" " by
Proposition 2 after taking LK. /L for K_ /K.
Also those of M’ are 0, p” 7%, 2p™ 7%, ..., " —
Dp™ ™~

Choose m so large that 2sp”  degL/K
< p™. Applying the argument in the proof of
Theorem 2 of [3] to the O(L,,) -semi-linear repre-
sentations M, N, M’, N’, the assumption A < p
gives a contradiction.

Proof of Theorem. Let E (resp. E’) be the
Galois closure of E/K (resp. E’/K). Write E @,
E=T1F, and E' Qg E =T F}, where F, is a
copy of E and F/is the composite field of E with
the image of a K-embedding of E’ into K. By ap-
plying Proposition 3 for E, E’, E, we have deg
E/K =degF,/K = deg F//K. Thus E = F/D
E’ and E D E’. We also have £/ D E. Hence E
=F.

Remark 1. From our proof “sufficiently
large m” in Proposition 3 admits a bound de-
pending only-on K, E* and deg E/K = deg E”’
/K and also one depending only on K, E, E’
and deg E* /K. Hence “sufficiently large m” in
Theorem admits a bound depending only on K,
and one of the two fields E and E".

Corollary. Let E/K be a finite Galois ex-
tension and E’/K a finite extension. Then E =
E’ if and only if, for some sufficiently large me,
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the 0,,-semi-linear representations of I'/I,, on
the additive groups O(Eg,) and O(E%,) are
isomorphic.

Remark 2. Our arguments and results hold
just as well in the case where K is a local field of
characteristic p > 0 with algebraically closed re-
sidue field if we consider only separable exten-
sions of K (cf. p. 268 of [1]).

Remark 3. If the residue field of K is per-
fect but not necessarily algebraically closed, we
still have the following result as Theorem 1D of
[1] by Corollary above: Let K_./K be a totally
ramified Z,-extension, E/K a finite totally rami-
fied Galois extension and E’/K a finite totally
ramified extension. Then EK, = E’K, for some
finite unramified extension K,/K if and only if
the O,,-semi-linear representations O(E g ,,) and
O(E’g,,) of I'/T,, are isomorphic for some suffi-
ciently large m.
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