On the Generators of the Mapping Class Group of a 3-dimensional Handlebody

By Moto-o TAKAHASHI
Institute of Mathematics, University of Tsukuba
(Communicated by Shokichi IYANAGA M. J. A., Nov. 13, 1995)

Let V be a handlebody of genus $g(\geq 2)$ and let $T=\partial V$. Let $\mathcal{M}_{V}, \mathcal{M}_{T}$ be the mapping class groups of V, T, respectively. (For the definition of a mapping class group, see [3].) It is well known that \mathcal{M}_{T} is isomorphic to the outer automorphism group of $\pi_{1}(T)$.

We have the injection $\nu: \mathcal{M}_{V} \rightarrow \mathcal{M}_{T}$ by letting the restriction $f \mid T: T \rightarrow T$ correspond to each homeomorphism $f: V \rightarrow V$.

In this paper we seek the generators of $\nu\left(\mathcal{M}_{V}\right)\left(\subset \mathcal{M}_{T}\right)$ which are as simple as possible as the products of the generators defined by Lickorish in [4].

Let $\alpha_{i}, \beta_{i}(i=1, \cdots, g), \nu_{i}(i=1, \cdots, g-1)$ be the isotopy classes of the Dehn twists about the simple loops shown in the Fig. 1.

We shall prove the following theorem.

Fig. 1
Theorem. $\nu\left(\mathcal{M}_{V}\right)$ is generated by $\alpha_{1}, \beta_{1} \alpha_{1}^{2} \beta_{1}$, $\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}, \beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}(i=1, \cdots, g-1)$.

Proof. Let $a_{i}, b_{i}(i=1, \cdots, g)$ be the generators of the fundamental group of the surface T as shown in the Fig. 2.

Fig. 2

$$
\left(\pi_{1}(T) \simeq\left\langle a_{i}, b_{i}(i=1, \cdots, g)\right| s_{1}^{-1} s_{2}^{-1} \cdots\right.
$$

$\left.s_{g}^{-1}=1\right\rangle$, where $\left.s_{i}=a_{i}^{-1} b_{i}^{-1} a_{i} b_{i}, i=1, \cdots, g.\right)$
By Suzuki [1], \mathcal{M}_{V} is generated by the isotopy classes of $\tau_{1}, \omega_{1}, \theta_{12}, \xi_{12}, \rho_{12}$ and ρ. The induced automorphisms of $\pi_{1}(T)$ are given by:
$\nu\left(\tau_{1}\right)\left\{\begin{array}{l}a_{1} \rightarrow b_{1}^{-1} a_{1} \\ a_{i} \rightarrow a_{i}(i=2, \cdots, g) \\ b_{i} \rightarrow b_{i}(i=1, \cdots, g),\end{array}\right.$
$\nu\left(\omega_{1}\right)\left\{\begin{array}{l}a_{1} \rightarrow a_{1}^{-1} s_{1}^{-1} \\ a_{i} \rightarrow a_{i}(i=2, \cdots, g) \\ b_{1} \rightarrow a_{1}^{-1} b_{1}^{-1} a_{1} \\ b_{i} \rightarrow b_{i}(i=2, \cdots, g)\end{array}\right.$
$\nu\left(\theta_{12}\right)\left\{\begin{array}{l}a_{1} \rightarrow a_{1} s_{2}^{-1} a_{1}^{-1} \\ a_{i} \rightarrow a_{i}(\mathrm{i}=2, \cdots, g) \\ b_{2} \rightarrow a_{2} b_{2} a_{1}^{-1} b_{1} a_{1} b_{2}^{-1} a_{2}^{-1} b_{2} \\ b_{i} \rightarrow b_{i}(i \neq 2)\end{array}\right.$
$\nu\left(\xi_{12}\right)\left\{\begin{array}{l}a_{1} \rightarrow b_{1} a_{1} b_{2}^{-1} s_{2} a_{1}^{-1} b_{1}^{-1} a_{1} \\ a_{2} \rightarrow a_{2} b_{2} a_{1}^{-1} b_{1}^{-1} a_{1} b_{2}^{-1} \\ a_{i} \rightarrow a_{i}(i=3, \cdots, g) \\ b_{i} \rightarrow b_{i}(i=1, \cdots, g),\end{array}\right.$
$\nu\left(\rho_{12}\right)\left\{\begin{array}{l}a_{1} \rightarrow s_{1}^{-1} a_{2} s_{1} \\ a_{2} \rightarrow a_{1} \\ a_{i} \rightarrow a_{i}(i=3, \cdots, g) \\ b_{1} \rightarrow s_{1}^{-1} b_{2} s_{1} \\ b_{2} \rightarrow b_{1} \\ b_{i} \rightarrow b_{i}(i=3, \cdots, g)\end{array}\right.$
$\nu(\rho)\left\{\begin{array}{l}a_{i} \rightarrow a_{i+1}(i=1, \cdots, g-1) \\ a_{g} \rightarrow a_{1} \\ b_{i} \rightarrow b_{i+1}(i=1, \cdots, g-1) \\ b_{g} \rightarrow b_{1}\end{array}\right.$
First we observe that each element stated in the theorem is actually an element of $\nu\left(\mathcal{M}_{V}\right)$. By [2], an element of \mathcal{M}_{T} is in $\nu\left(\mathcal{M}_{V}\right)$ if and only if, by the induced automorphism of $\pi_{1}(T),\left\langle b_{1}, \cdots\right.$, $\left.b_{g}\right\rangle$ is mapped in the normal subgroup generated by $\left\langle b_{1}, \cdots, b_{g}\right\rangle$.

Now the induced automorphisms of α_{1}, $\beta_{1} \alpha_{1}^{2} \beta_{1}, \beta_{i} \alpha_{i} \gamma_{i} \beta_{i}, \beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}$ are given by

$$
\begin{aligned}
& \alpha_{1} \quad\left\{\begin{array}{l}
a_{1} \rightarrow b_{1} a_{1} \\
a_{i} \rightarrow a_{i}(i=2, \cdots, g) \\
b_{i} \rightarrow b_{i}(i=1, \cdots, g)
\end{array}\right. \\
& \beta_{1} \alpha_{1}^{2} \beta_{1} \quad\left\{\begin{array}{l}
a_{1} \rightarrow a_{1}^{-1} b_{1} a_{1}^{-1} b_{1} a_{1} \\
a_{i} \rightarrow a_{i}(i=2, \cdots, g) \\
b_{1} \rightarrow a_{1}^{-1} b_{1}^{-1} a_{1} \\
b_{i} \rightarrow b_{i}(i=2, \cdots, g),
\end{array}\right. \\
& \beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\left\{\begin{array}{l}
a_{i} \rightarrow a_{i}^{-1} b_{i} a_{i}^{-1} b_{i} a_{i} b_{i+1}^{-1} \\
a_{i+1} \rightarrow b_{i+1} a_{i}^{-1} b_{i}^{-1} a_{1}^{2} a_{i+1} \\
a_{j} \rightarrow a_{j}(j \neq i, i+1) \\
b_{i} \rightarrow b_{i+1} a_{i}^{-1} b_{i}^{-1} a_{i} \\
b_{i+1} \rightarrow b_{i+1} a_{i}^{-1} b_{i}^{-1} a_{i}^{2} b_{i+1} a_{i}^{-2} b_{i} a_{i} b_{i+1}^{-1} \\
b_{j} \rightarrow b_{j}(j \neq i, i+1)
\end{array}\right. \\
& \beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1} \\
& \left\{\begin{array}{l}
a_{i} \rightarrow b_{i} a_{i} b^{-1}{ }_{i+1} a_{i+1} \\
a_{i+1} \rightarrow a_{i+1}^{-1} b_{i+1} a_{i}^{-1} b_{i}{ }^{-1} a_{i} a_{i+1}^{-1} b_{i+1} a_{i+1} \\
\left.a_{j} \rightarrow a_{j} j \neq i, i+1\right) \\
b_{i+1} \rightarrow a_{i+1}^{-1} a_{i}^{-1} b_{i} a_{i} b_{i+1}^{-1} a_{i+1} \\
b_{j} \rightarrow b_{j}(j \neq i+1) .
\end{array}\right.
\end{aligned}
$$

So, $\alpha_{1}, \beta_{1} \alpha_{1}^{2} \beta_{1}, \beta_{1} \alpha_{i} \gamma_{i} \beta_{i}, \beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1} \in \nu\left(\mathcal{M}_{V}\right)$.
Next we prove that $\alpha_{i}(i=2, \cdots, g), \gamma_{i}(i=$ $1, \cdots, g-1)$ and $\beta_{i} \alpha_{i}^{2} \beta_{i}(i=2, \cdots, g)$ are generated by the elements stated in the theorem. Now,

$$
\begin{aligned}
& \alpha_{i}\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right)=\beta_{i} \alpha_{i} \beta_{i} \gamma_{i} \beta_{i}=\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right) \gamma_{i} \\
& \gamma_{i}\left(\beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}\right)=\gamma_{i} \beta_{i+1} \gamma_{i} \alpha_{i+1} \beta_{i+1} \\
&=\beta_{i+1} \gamma_{i} \beta_{i+1} \alpha_{i+1} \beta_{i+1} \\
&=\beta_{i+1} \gamma_{i} \alpha_{i+1} \beta_{i+1} \alpha_{i+1} \\
&=\left(\beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}\right) \alpha_{i+1} .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \gamma_{i}=\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right)^{-1} \alpha_{i}\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right), \\
& \alpha_{i+1}=\left(\beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}\right)^{-1} \gamma_{i}\left(\beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}\right), \\
& \text { for } i=1, \cdots, g-1,1 \text {. Similarly, we have } \\
& \beta_{i+1} \alpha_{i+1}^{2} \beta_{i+1}=\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right)^{-1}\left(\beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}\right)^{-1} \\
& \quad\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right) \\
&\left(\beta_{i} \alpha_{i}^{2} \beta_{i}\right)^{-1}\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right)\left(\beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}\right)\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right) .
\end{aligned}
$$

These recursion formulae show that $\alpha_{1}(i=$ $2, \cdots, g), \gamma_{i}(i=1, \cdots, g-1)$ and $\beta_{1} \alpha_{i}^{2} \beta_{i}(i=$ $2, \cdots, g)$ are generated by the elements stated in the theorem.

Finally we prove that $\tau_{1}, \omega_{1}, \theta_{12}, \xi_{12}, \rho_{12}, \rho$ are generated by the elements stated in the theorem. Now,

$$
\tau_{1}=\alpha_{1}^{-1}
$$

$$
\begin{aligned}
& \omega_{1}=\alpha_{1}^{2}\left(\beta_{1} \alpha_{1}^{2} \beta_{1}\right), \\
& \theta_{12}=\alpha_{1}^{-1} \alpha_{2}\left(\beta_{2} \alpha_{2} \gamma_{1} \beta_{2}\right)\left(\beta_{2} \alpha_{2}^{2} \beta_{2}\right)^{-1} \alpha_{2}^{-1}, \\
& \xi_{12}=\alpha_{1}^{2}\left(\beta_{2} \alpha_{2}^{2} \beta_{2}\right) \gamma_{1}^{-1}\left(\beta_{2} \alpha_{2}^{2} \beta_{2}\right)^{-1} \alpha_{2}^{-1} \alpha_{1}, \\
& \rho_{12}=\alpha_{1}\left(\beta_{1} \alpha_{1}^{2} \beta_{1}\right)\left(\beta_{1} \alpha_{1} \gamma_{1} \beta_{1}\right)^{-1}\left(\beta_{2} \alpha_{2} \gamma_{1} \beta_{2}\right)^{-1} \\
& \quad \alpha_{1}^{-1}\left(\beta_{1} \alpha_{1} \gamma_{1} \beta_{1}\right)^{-1}\left(\beta_{1} \alpha_{1}^{2} \beta_{1}\right) \alpha_{1} .
\end{aligned}
$$

It remains only to prove that ρ is generated by the elements stated in the theorem. Let

$$
\begin{gathered}
\rho_{i i+1}=\alpha_{i}\left(\beta_{i} \alpha_{i}^{2} \beta_{i}\right)\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right)^{-1}\left(\beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}\right)^{-1} \alpha_{i}^{-1} \\
\left(\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}\right)^{-1}\left(\beta_{i} \alpha_{i}^{2} \beta_{i}\right) \alpha_{i} .
\end{gathered}
$$

The induced automorphism is given by

$$
\left\{\begin{array}{l}
a_{i} \rightarrow s_{i}^{-1} a_{i+1} s_{i} \\
a_{i+1} \rightarrow a_{i} \\
a_{j} \rightarrow a_{j}(j \neq i, i+1) \\
b_{i} \rightarrow s_{i}^{-1} b_{i+1} s_{i} \\
b_{i+1} \rightarrow b_{i} \\
\left.b_{j} \rightarrow b_{j} j \neq i, i+1\right)
\end{array}\right.
$$

Let $\theta=\rho_{g-1 g} \rho_{g-2 g-1} \cdots \rho_{23} \rho_{12}$. Then the induced automorphism is given by

$$
\left\{\begin{array}{l}
a_{1} \rightarrow s_{1}^{-1} s_{2}^{-1} \cdots s_{g-1}^{-1} a_{g} s_{g-1} \cdots s_{2} s_{1}=s_{g} a_{g} s_{g}^{-1} \\
a_{i} \rightarrow a_{i-1}(i=2, \cdots, g) \\
b_{1} \rightarrow s_{g} b_{g} s_{g}^{-1} \\
b_{i} \rightarrow b_{i-1}(i=2, \cdots, g) .
\end{array}\right.
$$

Let $\eta=\theta \rho$. Then, the induced automorphism is given by

$$
\left\{\begin{array}{l}
a_{1} \rightarrow s_{1} a_{1} s_{1}^{-1} \\
a_{i} \rightarrow a_{i} \quad(i=2, \cdots, g) \\
b_{1} \rightarrow s_{1} b_{1} s_{1}^{-1} \\
b_{i} \rightarrow b_{i}(i=2, \cdots, g)
\end{array}\right.
$$

This means that $\eta=\alpha_{1}^{2}\left(\beta_{1} \alpha_{1}^{2} \beta_{1}\right) \alpha_{1}^{2}\left(\beta_{1} \alpha_{1}^{2} \beta_{1}\right)$. Hence ρ is generated by the elements stated in the theorem. This completes the proof of the theorem.

References

[1] Suzuki, S.: On homeomorphisms of 3-dimensional handlebody. Canad. J. Math., 29, 111-124 (1977).
[2] MacMillan, D. R.: Homeomorphisms on a solid torus. Proc. AMS, 14, 386-390 (1963).
[3] Birman, J. S.: Braids, links, and mapping class groups (Princeton U. P.).
[4] Lickorish, W. B. R.: A finite set of generators for the homeotopy group of a 2 -manifolds. Proc. Camb. Phil. Soc., 60, 769-778 (1964) (Corrigendum, 62, 679-681 (1966).)

