Accessibility of Infinite Dimensional Brownian Motion to Holomorphically Exceptional Set*)

By Hiroshi Sugita**) and Satoshi TAKANOBU***)
(Communicated by Kiyosi ITÔ, M. J. A. . Nov. 13, 1995)

1. Introduction. In [6], we introduced the notion of holomorphically exceptional sets of the complex Wiener space. In particular, we pointed out the following remarkable relation between holomorphically exceptional sets and the standard Brownian motion $\left(Z_{t}\right)_{t \geq 0}$ on the complex Wiener space: Z_{t} does not hit a holomorphically exceptional set until time 1 almost surely.

In any finite dimensional space, if the Brownian motion does not hit a certain set until time 1 almost surely, neither does it after time 1 . So one may guess that the infinite dimensional Brownian motion never hits a holomorphically exceptional set after time 1 , either.

But we will show in the present paper that the above guess is false. That is, we will construct a holomorphically exceptional set which the Brownian motion $\left(Z_{t}\right)_{t \geq 0}$ hits after a certain time $t_{0}>1$ almost surely.

The reason why such an example can exist lies essentially in a fact that the distributions of $\left(Z_{t}\right)_{t \geq 0}$ at different times are mutually singular.
2. Presentation of Theorem. Let (B, H, μ) be a real abstract Wiener space, i.e., B is a real separable Banach space (whose dimension is infinite), H is a real separable Hilbert space continuously and densely imbedded in B and μ is a Gaussian measure satisfying

$$
\begin{aligned}
\int_{B} \exp (\sqrt{-1}\langle z, l\rangle) \mu(d z)=\exp (& \left.-\frac{1}{4}\|l\|_{H^{*}}^{2}\right) \\
l & \in B^{*} \subset H^{*}
\end{aligned}
$$

We introduce an almost complex structure $J: B \rightarrow$ B which is an isometry such that $J^{2}=-1$ and that the restriction $\left.J\right|_{H}: H \rightarrow H$ is also an isometry. The abstract Wiener space (B, H, μ) endowed with the almost complex stucture J is

[^0]called an almost complex abstract Wiener space and denoted by (B, H, μ, J).

Let $B^{* \boldsymbol{C}}$ be the complexification of the dual space B^{*}. Then define
$B^{* 4.0)}:=\left\{\varphi \in B_{*}^{* C} \mid J_{*}^{*} \varphi=\sqrt{-1} \varphi\right\}$,
$B^{*(0,1)}:=\left\{\varphi \in B^{* C} \mid J^{*} \varphi=-\sqrt{-1} \varphi\right\}$.
In other words, $B^{*(1,0)}$ is the space of bounded complex linear functionals on B and $B^{*(0,1)}$ is the space of bounded complex anti-linear functionals on B. We see that $B^{* C}=B^{*(1,0)} \oplus B^{*(0,1)}$. The Hilbert spaces $H^{* \boldsymbol{C}}, H^{*(1,0)}$ and $H^{*(0,1)}$ are similarly defined.

Definition. 1. A function $G: B \rightarrow \boldsymbol{C}$ is called a holomorphic polynomial, if it is expressed in the form
(1) $G(z)=g\left(\left\langle z, \varphi_{1}\right\rangle, \ldots,\left\langle z, \varphi_{n}\right\rangle\right), z \in B$, where $n \in \boldsymbol{N}, g: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}$ is a polynomial with complex coefficients and $\varphi_{1}, \ldots, \varphi_{n} \in B^{*(1,0)}$ The class of all holomorphic polynomials is denoted by \mathscr{P}_{h}.

Definition. 2. Let $p \in(1, \infty)$. For a sequence $\left\{G_{n}\right\} \subset \mathscr{P}_{h}$ such that $\sum_{n}\left\|G_{n}\right\|_{L^{p}(\mu)}<\infty$, we define a subset $N^{p}\left(\left\{G_{n}\right\}\right)$ of B by
(2) $N^{p}\left(\left\{G_{n}\right\}\right):=\left\{z \in B\left|\sum_{n}\right| G_{n}(z) \mid=\infty\right\}$.

A set $A \subset B$ is called an L^{p}-holomorphically exceptional set, if it is a subset of a set of the type $N^{p}\left(\left\{G_{n}\right\}\right)$. We denote the class of all $L^{p}-$ holomorphically exceptional sets by \mathcal{N}_{h}^{p}. If an assertion holds outside of an L^{p}-holomorphically exceptional set, we say that it holds "a.e. $\left(\mathcal{N}_{h}^{p}\right)$ ".

Let $\left(Z_{t}\right)_{t \geq 0}$ be a B-valued independent increment process defined on a probability space (Ω, \mathscr{F}, P) such that $Z_{0}=0$ and the distribution of $Z_{t}-Z_{s}, t>s$, is μ_{t-s}, where $\mu_{r}(\cdot):=\mu(\cdot /$ $\sqrt{r})$. Then the process $\left(Z_{t}\right)_{t \geq 0}$ becomes a diffusion process on B and it is called a B-valued Brownian motion (see, for example, [3]).

In [6], it is known that $\left(Z_{t}\right)_{t \geq 0}$ does not hit any L^{p}-holomorphically exceptional set until time 1 almost surely.

Theorem. There exists an L^{2}-holomorphically exceptional set $A \subset B$ such that

$$
1<\sigma_{A}:=\inf \left\{t \geq 0 \mid Z_{t} \in A\right\}<\infty \quad \text { a.s. }
$$

We construct the set A as follows: Let $\left\{\varphi_{n}\right\}_{n=1}^{\infty} \subset B^{*(1,0)}$ be an orthonormal system of $H^{*(1,0)}$. Then put
(3) $\quad G_{n}(z):=\frac{1}{n^{2}} \prod_{j=\frac{n(n-1)}{2}+1}^{\frac{n(n+1)}{2}}\left\langle z, \varphi_{j}\right\rangle, n=1,2, \ldots$

Note that $\left\{G_{n}\right\}_{n=1}^{\infty}$ is a sequence of independent random variables under each probability measure $\mu_{t}, t>0$ and that $\left\|G_{n}\right\|_{L^{2}(\mu)}=1 / n^{2}$. Finally we define A by

$$
\begin{equation*}
A:=N^{2}\left(\left\{G_{n}\right\}\right) \tag{4}
\end{equation*}
$$

Then we will prove that

$$
\sigma_{A}=e^{r}, \quad \text { a.s. }
$$

where

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right)=0.57721 \ldots
$$

is Euler's constant.
Remark. If $t \neq t^{\prime}$ then μ_{t} and $\mu_{t^{\prime}}$ are mutually singular, and hence there exists a set K such that

$$
\left\{\begin{array}{l}
\mu_{t}(K)=0, \text { if } 0 \leq t \leq 1 \\
\mu_{t}(K)=1, \text { if } 1<t
\end{array}\right.
$$

But, we do not know in general whether $1 \leq \sigma_{K}$ or not for such K.
3. Proof of Theorem. In this section, we always assume that A is the L^{2}-holomorphically exceptional set of B defined by (4).

Lemma 1. For each $t \geq e^{r}$, we have $\mu_{t}(A)=1$
Lemma 1 means that $Z_{t} \in A$, a.s., if $t \geq e^{\gamma}$, and hence $\sigma_{A} \leq e^{\gamma}$, a.s. This lemma immediately follows from the following lemma.

Lemma 2. Let ξ_{1}, ξ_{2}, \ldots be a sequence of $[0$, $\infty)$-valued i.i.d. random variables with distribution $2 r \exp \left(-r^{2}\right) d r . P u l$

$$
g_{n}:=\frac{1}{n^{2}} \prod_{j=\frac{n(n-1)}{2}+1}^{\frac{n(n+1)}{2}} \xi_{j}, n=1,2, \ldots
$$

Then if $t \geq e^{r}$, we have

$$
\sum_{n=1}^{\infty} t^{n / 2} g_{n}=\infty, \quad \text { a.s. }
$$

Proof. In fact, we have

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} e^{r n / 2} g_{n}=\infty, \quad \text { a.s. } \tag{5}
\end{equation*}
$$

which we will show below.
We first rewrite $\log g_{n}$ as

$$
\log g_{n}=-\frac{r n}{2}+S_{n}-2 \log n
$$

where

$$
S_{n}:=\sum_{j=\frac{n(n-1)}{2}+1}^{\frac{n(n+1)}{2}} \Xi_{j}, \quad \Xi_{j}:=\log \xi_{j}+\frac{\gamma}{2}
$$

Note that $\left\{\boldsymbol{\Xi}_{j}\right\}_{j=1}^{\infty}$ is a sequence of i.i.d. random variables with mean 0 and variance $v:=\operatorname{Var}\left(\Xi_{1}\right)$ $\left(=\frac{1}{4}\left(\Gamma^{\prime \prime}(1)-\gamma^{2}\right)>0\right), \quad$ which are indeed computed by using the equality $\gamma=-$ $\Gamma^{\prime}(1)$ (see, for example, [2]). Then we have

$$
\begin{equation*}
e^{r n / 2} g_{n}=n^{s_{n} / \log n-2} \tag{6}
\end{equation*}
$$

According to the central limit theorem, we see

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}}{\sqrt{n}} \geq 1\right) & =\lim _{n \rightarrow \infty} P\left(\frac{\sum_{j=1}^{n} \Xi_{j}}{\sqrt{n}} \geq 1\right) \\
& =\int_{1}^{\infty} \frac{1}{\sqrt{2 \pi v}} e^{-x^{2} / 2 v} d x \\
& >0
\end{aligned}
$$

and hence

$$
\sum_{n=1}^{\infty} P\left(\frac{S_{n}}{\sqrt{n}} \geq 1\right)=\infty
$$

Since $\left\{\left\{S_{n} / \sqrt{n} \geq 1\right\}\right\}_{n=1}^{\infty}$ are independent events, the second Borel-Cantelli lemma implies that

$$
P\left(\frac{S_{n}}{\sqrt{n}} \geq 1, \text { infinitely often }\right)=1
$$

Thus we see

$$
P\left(\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{\log n}=\infty\right)=1
$$

and hence by (6) we finally have (5).
Now that we have seen $\sigma_{A} \leq e^{r}$, we will prove the opposite inequality:

Lemma 3. $\quad \sigma_{A} \geq e^{\gamma}$, a.s.
Since A is a holomorphically exceptional set, it is known that $\sigma_{A} \geq 1$ by [6]. To get more precise estimate as in Lemma 3, we need the following lemma.

Lemma 4. Let $0<T<e^{r}$. Then there exists $0<p<1$ such that

$$
T^{p / 2} \Gamma\left(\frac{p}{2}+1\right)<1
$$

Proof. We first show the following inequality:

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right) e^{-x / n} \geq \exp \left(-\frac{\pi^{2} x^{2}}{6}\right) \tag{7}\\
& 0<x \leq 1
\end{align*}
$$

To do this, we note two simple facts:
(8) $(1+x) e^{-x}=1-x^{2} \int_{0}^{1} s e^{-x s} d s, \quad x \in \boldsymbol{R}$

$$
\begin{align*}
\prod_{n=1}^{\infty}\left(1-a_{n}\right) \geq \exp & \left(-\sum_{n=1}^{\infty} \frac{a_{n}}{1-a_{n}}\right) \tag{9}\\
& 0 \leq a_{n}<1, n=1,2, \ldots
\end{align*}
$$

These two facts imply for any $0<x \leq 1$ that

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right) e^{-x / n}=\prod_{n=1}^{\infty}\left(1-x_{n}^{2} \int_{0}^{1} s e^{-x_{n} s} d s\right) \\
& \text { where } x_{n}:=x / n \\
& \quad \geq \exp \left(-\sum_{n=1}^{\infty} \frac{x_{n}^{2} \int_{0}^{1} s e^{-x_{n} s} d s}{1-x_{n}^{2} \int_{0}^{1} s e^{-x_{n} s} d s}\right) \\
& \quad \geq \exp \left(-\sum_{n=1}^{\infty} x_{n}^{2}\right) \\
& \quad=\exp \left(-x^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)=\exp \left(-\frac{\pi^{2} x^{2}}{6}\right)
\end{aligned}
$$

thus we obtain (7).
Since we have assumed $0<T<e^{r}$, and hence $\gamma-\log T>0$, we can take $0<p<1$ such that

$$
\begin{equation*}
\gamma-\log T-\frac{\pi^{2}}{6} \frac{p}{2}>0 \tag{10}
\end{equation*}
$$

Then we see that

$$
\begin{aligned}
T^{p / 2} & \Gamma\left(\frac{p}{2}+1\right) \\
& =e^{(p / 2) \log T} \Gamma\left(\frac{p}{2}+1\right) \\
& =e^{-(\phi / 2)(r-\log T)} e^{\gamma \phi / 2} \Gamma\left(\frac{p}{2}+1\right) .
\end{aligned}
$$

Noting (7), (10) and Weierstrass's formula

$$
\frac{1}{\Gamma(x+1)}=e^{\gamma x} \prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right) e^{-x / n}, \quad x>0
$$

we see

$$
\begin{aligned}
& T^{p / 2} \Gamma\left(\frac{p}{2}+1\right) \\
& \quad=e^{-(p / 2)(r-\log T)} \frac{1}{\prod_{n=1}^{\infty}\left(1+\frac{p}{2 n}\right) e^{-p / 2 n}} \\
& \quad \leq e^{-(p / 2)(r-\log T)} \exp \left(\frac{\pi^{2}}{6}\left(\frac{p}{2}\right)^{2}\right) \\
& \quad=\exp \left(-\frac{p}{2}\left(r-\log T-\frac{\pi^{2}}{6} \frac{p}{2}\right)\right)<1
\end{aligned}
$$

Thus the proof of the lemma is complete.
Proof of Lemma 3. Let $0<p<1$ be as in Lemma 4. By Minkowski's inequality, we have

$$
\begin{aligned}
&\left(\sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|\right)^{p} \leq \sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|^{p} \\
& \leq \sum_{n=1}^{\infty} \sup _{0 \leq s \leq T}\left|G_{n}\left(Z_{s}\right)\right|^{p} \\
& 0 \leq t \leq T
\end{aligned}
$$

Therefore,

$$
\sup _{0 \leq t \leq T}\left(\sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|\right)^{p} \leq \sum_{n=1}^{\infty} \sup _{0 \leq t \leq T}\left|G_{n}\left(Z_{t}\right)\right|^{p},
$$

and hence,

$$
\begin{align*}
& E\left[\sup _{0 \leq t \leq T}\left(\sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|\right)^{p}\right] \tag{11}\\
& \quad \leq \sum_{n=1}^{\infty} E\left[\sup _{0 \leq t \leq T}\left|G_{n}\left(Z_{t}\right)\right|^{p}\right]
\end{align*}
$$

Now, let p^{\prime} be such that $0<p^{\prime}<p$. Since $\left(G_{n}\left(Z_{t}\right)\right)_{t \geq 0}$ is a conformal martingale, $\left(\left|G_{n}\left(Z_{t}\right)\right|^{p^{\prime}}\right)_{t \geq 0}$ is a submartingale (see [1]). By Doob's inequality, we then have

$$
\begin{aligned}
E & {\left[\sup _{0 \leq t \leq T}\left|G_{n}\left(Z_{t}\right)\right|^{p}\right] } \\
& =E\left[\left(\sup _{0 \leq t \leq T}\left|G_{n}\left(Z_{t}\right)\right|^{p^{\prime}}\right)^{p / p^{\prime}}\right] \\
& \leq\left(\frac{p}{p-p^{\prime}}\right)^{p / p^{\prime}} E\left[\left|G_{n}\left(Z_{T}\right)\right|^{p}\right] .
\end{aligned}
$$

Combining this with (11), we have

$$
\begin{align*}
& E\left[\sup _{0 \leq t \leq T}\left(\sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|\right)^{p}\right] \tag{12}\\
\leq & \left(\frac{p}{p-p^{\prime}}\right)^{p / p^{\prime}} \sum_{n=1}^{\infty} E\left[\left|G_{n}\left(Z_{T}\right)\right|^{p}\right] .
\end{align*}
$$

By the definition (3) of $G_{n}(z)$ and $P\left(Z_{T} \in \cdot\right)=$ $\mu(\sqrt{T} z \in \cdot)$, we see

$$
E\left[\left|G_{n}\left(Z_{T}\right)\right|^{p}\right]
$$

$$
=\left(\frac{1}{n^{2}}\right)^{p} \int_{B} T^{n p / 2} \prod_{j=n(n-1) / 2+1}^{n(n+1) / 2}\left|\left\langle z, \varphi_{j}\right\rangle\right|^{p} \mu(d z)
$$

$$
=\left(\frac{1}{n^{2}}\right)^{p} T^{n p / 2}\left(\int_{B}\left|\left\langle z, \varphi_{1}\right\rangle\right|^{p} \mu(d z)\right)^{n}
$$

Here, the last integral is calculated as

$$
\begin{aligned}
\int_{B} \mid & \left.\left\langle z, \varphi_{1}\right\rangle\right|^{p} \mu(d z) \\
& =\iint\left(x^{2}+y^{2}\right)^{p / 2} \frac{1}{\pi} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{2 \pi} r^{p} \frac{1}{\pi} e^{-r^{2}} r d r d \theta \\
& =\int_{0}^{\infty} 2 r^{p} e^{-r^{2}} r d r \\
& =\int_{0}^{\infty} s^{p / 2} e^{-s} d s=\Gamma\left(\frac{p}{2}+1\right)
\end{aligned}
$$

So we have

$$
\begin{aligned}
E\left[\left|G_{n}\left(Z_{T}\right)\right|^{p}\right] & =\left(\frac{1}{n^{2}}\right)^{p} T^{n p / 2} \Gamma\left(\frac{p}{2}+1\right)^{n} \\
& =\frac{1}{n^{2 p}}\left(T^{p / 2} \Gamma\left(\frac{p}{2}+1\right)\right)^{n}
\end{aligned}
$$

Then by virtue of (11), we see

$$
\begin{aligned}
E & {\left[\sup _{0 \leq t \leq T}\left(\sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|\right)^{p}\right] } \\
& \leq\left(\frac{p}{p-p^{\prime}}\right)^{p / p^{\prime}} \sum_{n=1}^{\infty} \frac{1}{n^{2 p}}\left(T^{p / 2} \Gamma\left(\frac{p}{2}+1\right)\right)^{n} \\
& <\infty
\end{aligned}
$$

The last inequality " $<\infty$ " follows from Lemma 4. Thus we have

$$
\sup _{0 \leq t \leq T}\left(\sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|\right)^{p}<\infty \quad \text { a.s., }
$$

which implies

$$
P\left(\sum_{n=1}^{\infty}\left|G_{n}\left(Z_{t}\right)\right|<\infty 0 \leq{ }^{\forall} t \leq T\right)=1
$$

or equivalently, $\sigma_{A} \geq T$ a.s. Since $0<T<e^{r}$ is arbitrary, we finally obtain $\sigma_{A} \geq e^{r}$ a.s.

References

[1] R. K. Getoor and M. J. Sharpe: Conformal martingales. Inventiones Math., 16, 271-308 (1972).
[2] A. Erdélyi: Higher Transcendental Functions. I. McGraw-Hill, New York (1955).
[3] L. Gross: Potential theory on Hilbert space. J. Func. Anal., 1, 123-181 (1967).
[4] I. Shigekawa: Itô-Wiener expansions of holomorphic functions on the complex Wiener space. Stochastic Analysis (eds. E. Mayer et al.). Academic Press, San Diego, pp. 459-473 (1991).
[5] H. Sugita: Properties of holomorphic Wiener functions-skeleton, contraction and local Taylor expansion. Probab. Theo. and Rel. Fields, 100, 117-130 (1994).
[6] H. Sugita: Regular version of holomorphic Wiener function. J. Math. Kyoto Univ., 34, 849-857 (1994).

[^0]: *) Dedicated to Professor Shinzo Watanabe on his 60 th birthday.
 **) Graduate School of Mathematics, Kyushu University
 ***) Department of Mathematics, Faculty of Science, Kanazawa University.

