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Accessibility of Infinite Dimensional Brownian Motion
to Holomorphically Exceptional Set*)

By Hiroshi SUGITA **) and Satoshi TAKANOBU ***)

(Communicated by Kiyosi IT6, M. J. A., Nov. 13, 1995)

1. Introduction. In [6], we introduced the called an almost complex abstract Wiener space and
notion of holomorphically exceptional sets of the denoted by (B, H,/z, ]).
complex Wiener space. In particular, we pointed Let B *c

be the complexification of the dual
out the following remarkable relation between space B* Then define
holomorphically exceptional sets and the stan- B *<i’d) {0 B*CIJ* v- 10},
dard Brownian motion (Zt)to on the complex B *(’1) {0 B*Clj*o
Wiener space: Z does not hit a holomorphically ex- In other words, B*’) is the space of bounded
ceptional set until time 1 almost surely, complex linear functionals on B and B *’1)

is the
In any finite dimensional space, if the Brow- space of bounded complex anti-linear functionals

nian motion does not hit a certain set until time 1 on B. We see that B *c= B*’) B *’1). The
almost surely neither does it after time 1. So one Hilbert spaces H*C H*1’)

and H are simi-

may guess that the infinite dimensional Brownian larly defined.
motion never hits a holomorphically exceptional Definition. 1. A function G:B--+ C is cal-
set after time 1, either, led a holomorphic polynomial, if it is expressed in

But we will show in the present paper that the form
the above guess is false. That is, we will con- (1) G(z) =g((z, q)l),..., (z, q)n)), z B,
struct a holomorphically exceptional set which where n N, g Cn--+ C is a polynomial with
the Brownian motion (Zt)t 0 hits after a certain complex coefficients and q)l,. n B*<1’7
time to > 1 almost surely. The class of all holomorphic polynomials is de-

The reason why such an example can exist noted by h.
lies essentially in a fact that the distributions of Definition. 2. Let p (1, oo). For a sequ-
(Zt)t_>_o at different times are mutually singular, ence {n} ( {/)h such that Xr < oo, we

2. Presentation of Theorem. Let (B, H,/z) define a subset NP({Gn}) of B by
be a real abstract Wiener space, i.e., B is a real (2) NP({G}) := {z BlYlG(z)
separable Banach space (whose dimension is infi-

A set A B is called an L-holomorphically excep-
hire), H is a real separable Hilbert space con-

tional set, if it is a subset of a set of the type
tinuously and densely imbedded in B and /2 is a N({Gn}). We denote the class of all L-Gaussian measure satisfying

holomorphically exceptional sets by A/h If an
exp(v/- 1 (z 1})lz(dz) exp -II/11 H*

leB*cH*.
We introduce an almost complex structure ] B
B which is an isometry such that ]2= I and
that the restriction JIH:H-+ H is also an

isometry. The abstract Wiener space (B, H,
endowed with the almost complex stucture ] is

Dedicated to Professor Shinzo Watanabe on

assertion holds outside of an L-holomorphically
exceptional set, we say that it holds "i.e. (A/’h) ’’.

Let (Zt)t 0 be a B-valued independent in-
crement process defined on a probability space
(Q, , P) such that Z0 0 and the distribution
of Z Zs, t > s, is Pt-s, where /r(’) := /("/
v). Then the process (Zt)t 0 becomes a diffu-
sion process on B and it is called a B-valued
Brownian motion (see, for example, [3]).

his 60th birthday. In [6], it is known that (Zt)t 0 does not hit
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1 < a’=inf{t_>01ZtA} < a.s.

We construct the set A as follows: Let
{gn}n=l c B *(1’)

be an orthonormal system of

H *(1’). Then put
n(n+l)

(3) G (z) II (z 9j> n 1,2
/// j=n(n2-1) +1

Note that {Gn}n= is a sequence of independent
random variables under each probability measure

fz t, t> 0 and that 1/n, Finally we
define A by
(4) A "= N:({G.}).
Then we will prove that

7A e a.s.,,
where

7.= lim --logn =0.57721...
k--

is Euler’s constant.
Remark. If t 4= t’ then /t and Pr are

mutually singular, and hence there exists a set K
such that

at(K) 0, if0 G tG 1,
[2t(K) 1, if 1 < t.

But, we do not know in general whether 1 <_ aK
or not for such K.

3. Proof of Theorem. In this section, we
Lalways assume that A is the -holomorphically

exceptional set of B defined by (4).
Lemma 1. For each t >_ e r, we have [2 (A) 1
Lemma 1 means that Z A, a.s., if t _> e r,

and hence aA <--e r, a.s. This lemma immediately
follows from the following lemma.

Lemma 2. Let , 2,... be a sequence of [0,
oo)-valued i.i.d, random variables with distribution
2 r exp (-- r2) dr. Put

n(n+l)

1
gn ---- H se,n= 12

/// 1=n(n2-1) +1

Then if t >_ e r, we have

t
/

gn oo, a.s.
=1

Proof In fact, we have

(5) limer’/gn c, a.s.,

which we will show below.
We first rewrite log gn as

7.nlog g. 2 + S 2 log n,

where

n(n+l)

S,:= E %, %’-log+-.
n(n2-- 1) +1

Note that {}7= is a sequence of i.i.d, random
variables with mean 0 and variance v "= Var()- (1) 7" > 0 which are

computed by using the equality 7"
F’(1) (see, for example, [2]). Then we have

lSn/logn-(6) er"/2g,
According to the central limit theorem, we see

lim P( S_ >_ 1) lim P( Z;=I’"J > 1)
1 _x2/2v

v/cv e dx

>0,
and hence

indeed

ity"

To do this, we note two simple facts"

-XSds(8) (1 + x)e-x= 1--x se x R

(9) II (1-a.) _>exp 1--a.
0-<a.< 1,= 1,2

These two facts imply for any 0 < x --< 1 that

2X2

0<x<_l.

p

S. ->1 =oo.

Since {{S,,/V >- 1}}= are independent events,
the second Borel-Cantelli lemma implies that

P(S-nn >_ 1, infinitely often)= 1.

Thus we see

P 1-=l-ram log n
and hence by (6) we finally have (5).

Now that we have seen aA <--er, we will
prove the opposite inequality:

Lemma 3. (A >- er, a.s.

Since A is a holomorphically exceptional set,
it is known that aA --> 1 by [6]. To get more pre-
cise estimate as in Lemma 3, we need the follow-
ing lemma.

Lemma 4. Let 0 < T < e r. Then there exists

0 < p < 1 such that

Proof We first show the following inequal-
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-xln11 1+ e l (1-- x. fo se-*"ds)
where x. "= x/n

Xn se-X"Sds

n=l
1 x se-X’Sds

2exp Nx
2x

thus we obtain (7).
Since we have assumed 0 < T< eT, and

hence 7"--logT> 0, we can take 0 <p < 1
such that

(10) --logT
7r p

>06 2
Then we see that

e

e-9/">(r-lgT)e."r’/"’-’[P,,-- + 1).
Noting (7), (10) and Weierstrass’s formula

1 =erX ( _) -x/,,

F(x+ 1) II 1 + e x> 0,

we see

(P/2) (y--log T)

(p/2) (y--log T)<e

exp(--(7---logT

1 -t- e
-l/an

=1

exp (-- () )
6 2

Thus the proof of the lemma is complete.

Proof of Lemma 3. Let 0 <p < 1 be as in

Lemma 4. By Minkowski’s inequality, we have

a.(z,)l _< zl.(z,)I’

<_ E sup I.(Zs)
n-.=l

O<_t< T.
Therefore,

sup
OtT

sup G,,(Z,) ,
ONtNT

and hence,

(11) E sup Gn(Zt)
O<t<_T

[<--lE sup Gn(Zt) I’
otT

Now, let p’ be such that 0 <p’ <p.
Since (G.(Z))o is a conformal martingale,

(I G(Z)I’)o is a submartingale (see Ill). By
Doob’s inequality, we then have

E[ sup
OtT

P/P"

p, Ell Gn(Zr)I]

Combining this with (11), we have

<t<T

)p/p"P
p, E E [I Cn(Z7)[P].< p__

By the definition (3) of Gn(z) and P(ZT ")
(vz "), we see

Ell G.(Zr) Iq
TnI/2 11 I<z, > I(dz)

j=n(n-1)/2+l

Here, the last integral is calculated as

l<z, > I(dz)

ff(x + ya)/a 1 _,x+,,dxdy
R

_oof"r1.’o
e- rdrdO

oo 2re-rrdr

So we have

1 (T*’/2F(- + 1))"2P

Then by virtue of (11), we see

tT
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The last inequality "< oo" follows from Lemma
4. Thus we have

sup G, (Zt) < oo a.s.,
Ot<_T

which implies

e G.(Z,)I< oo 0<_ t_< 1,

or equivalently, aA -> T a.s. Since 0 < T < er is
arbitrary, we finally obtain ffa > er a.s.
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