Dihedral Extensions of Degree 8 over the Rational p-adic Fields

By Hirotada NAITO

Department of Mathematics, Faculty of Education, Kagawa University (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1995)

0. Introduction. We denote by Q_p the rational p-adic field for a prime p. It is well-known that there exist only finitely many extensions of a fixed degree over Q_p in a fixed algebraic closure of Q_p (cf. Weil [4] p. 208). Fujisaki [1] exhibited all extensions over Q_p whose Galois group is isomorphic to the quaternion group of order 8. In this note, we shall exhibit all extensions L over Q_p whose Galois group is isomorphic to the dihedral group D_4 of order 8. We call such extensions D_4 -extensions. We shall show that there exist no such extension for $p \equiv 1 \mod 4$, one extension for $p \equiv 3 \mod 4$ and eighteen extensions for p = 2.

We denote by K the quadratic extension over Q_p such that L/K is a cyclic extension of degree 4. We denote by K_1 and K_2 the other two quadratic extensions over Q_p in L. We denote by M the compositum of K_1 and K_2 . We denote by M_i and M'_i the quadratic extensions over K_i in Lwhich are not Galois extensions over Q_p . We deal with the case of odd primes in § 1. We exhibit all D_4 -extensions over Q_2 in § 2 by getting all such M_i and M'_i .

We remark that Yamagishi [3] computed the number of extensions K over a finite extension k/Q_p whose Galois group Gal(K/k) is isomorphic to a fixed finite p-group (cf. see also cited papers in [3]).

1. The case $p \neq 2$. Let L/Q_p be a D_4 -extension. L/Q_p has four intermediate fields M_1 , M'_1 , M_2 , M'_2 of degree 4 which are not Galois extensions over Q_p . We see that they are totally and tamely ramified, because p is an odd prime. We see by Serre [2] that Q_p has four totally and tamely ramified extensions of degree 4. Therefore we see that Q_p has at most one D_4 -extension. In the case $p \equiv 1 \mod 4$, we see that Q_p has no D_4 -extension, because $Q_p(\sqrt[4]{p})/Q_p$ is a totally and tamely ramified Galois extension of degree 4. In the case $p \equiv 3 \mod 4$, we see that $Q_p(\sqrt{-1}, \sqrt[4]{p})/Q_p$ is a D_4 -extension.

2. The case p = 2. Let L/Q_2 be a Galois extension of degree 8. We see that the Galois group of L/Q_2 is isomorphic to D_4 if and only if L contains an intermediate field of degree 4 which is not a Galois extension over Q_2 . Thus it is sufficient to construct all quadratic extensions over K_i which are not Galois extensions over Q_2 , where K_i is a quadratic extension over Q_2 . We get $M_i = K_i(\sqrt{\varepsilon})$ for an $\varepsilon \in K_i^{\times}$ such that $\varepsilon^{\sigma}/\varepsilon$ is not square in K_i for the generator σ of the Galois group_of K_i / Q_2 . We see $\underline{M}'_i = K_i (\sqrt{\varepsilon^{\sigma}}), L$ $= K_i(\sqrt{\varepsilon}, \sqrt{\varepsilon}^{\sigma})$ and $M = K_i(\sqrt{\varepsilon}\varepsilon^{\sigma})$. So we examine a representative system of $K_i^{\times}/(K_i^{\times})^2$. We take all pairs $\{\varepsilon, \varepsilon^{\sigma}\}$ of the system such that $\varepsilon \neq$ $\varepsilon^{\sigma} \mod (K_i^{\times})^2$. By putting $L = K_i(\sqrt{\varepsilon}, \sqrt{\varepsilon}^{\sigma})$, we get all D_4 -extensions L/Q_2 .

It is well-known that all quadratic extensions over Q_2 are $Q_2(\sqrt{-1})$, $Q_2(\sqrt{-5})$, $Q_2(\sqrt{5})$, $Q_2(\sqrt{2})$, $Q_2(\sqrt{-2})$, $Q_2(\sqrt{10})$ and $Q_2(\sqrt{-10})$. Next we examine all possible cases for K_i . We denote by \mathfrak{o} the ring of integers of K_i .

2-1. $K_i = Q_2(\sqrt{m})$ for $m = \pm 2, \pm 10$.

In this case, $\mathfrak{p} = (\sqrt{m})$ is the prime ideal of K_i . We see that all elements of $1 + \mathfrak{p}^5$ are square in K_i . Therefore we get $K_i^{\times}/(K_i^{\times})^2 \cong (\langle\sqrt{m}\rangle/\langle m\rangle)$ $\times (\mathfrak{o}^{\times}/\langle 1+m+2\sqrt{m}, 1+\mathfrak{p}^5\rangle)$ by 1+m+2 $\sqrt{m} = (1+\sqrt{m})^2$. For constructing D_4 -extensions, it is sufficient to examine elements ε and $\varepsilon\sqrt{m}$, where $\varepsilon = a + b\sqrt{m}$ for a = 1,3,5,7 and b =0,1,2,3. We take $\varepsilon(\text{resp. } \varepsilon\sqrt{m})$ such that $\varepsilon, \varepsilon^{\sigma}$, $\varepsilon(1+m+2\sqrt{m})$ and $\varepsilon^{\sigma}(1+m+2\sqrt{m})$ (resp. $\varepsilon, -\varepsilon^{\sigma}, \varepsilon(1+m+2\sqrt{m})$ and $-\varepsilon^{\sigma}(1+m+2\sqrt{m})$ are different modulo \mathfrak{p}^5 each other. Then we get D_4 -extensions as follows:

$$\begin{split} A_1 &= \{ \boldsymbol{Q}_2(\sqrt{1} + \sqrt{2}, \sqrt{-1}), \ \boldsymbol{Q}_2(\sqrt{3} + \sqrt{2}, \sqrt{-1}), \\ \boldsymbol{Q}_2(\sqrt{2}, \sqrt{-1}), \ \boldsymbol{Q}_2(\sqrt{3\sqrt{2}}, \sqrt{-1}) \}, \\ A_2 &= \{ \boldsymbol{Q}_2(\sqrt{\sqrt{-2}}, \sqrt{-1}), \ \boldsymbol{Q}_2(\sqrt{3\sqrt{-2}}, \sqrt{-1}) \}, \\ B_1 &= \{ \boldsymbol{Q}_2(\sqrt{1} + \sqrt{-2}, \sqrt{-5}), \ \boldsymbol{Q}_2(\sqrt{5} + \sqrt{-2}, \sqrt{-5}) \}, \\ C_1 &= \{ \boldsymbol{Q}_2(\sqrt{\sqrt{-2}(1 + \sqrt{-2})}, \sqrt{5}), \\ \boldsymbol{Q}_2(\sqrt{\sqrt{-2}(1 + 3\sqrt{-2})}, \sqrt{5}) \}, \\ C_2 &= \{ \boldsymbol{Q}_2(\sqrt{\sqrt{-10}(1 + \sqrt{-10})}, \sqrt{5}), \end{split}$$

$$\begin{aligned} & \boldsymbol{Q}_{2}(\sqrt{-10} (1+3\sqrt{-10}), \sqrt{5})\}, \\ & D_{1} = \{\boldsymbol{Q}_{2}(\sqrt{1+\sqrt{10}}, \sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{3}+\sqrt{10}, \sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{3}\sqrt{10}, \sqrt{-1})\}, \\ & \boldsymbol{Q}_{2}(\sqrt{-10}, \sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{3}\sqrt{10}, \sqrt{-1})\}, \\ & D_{2} = \{\boldsymbol{Q}_{2}(\sqrt{\sqrt{-10}}, \sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{3}\sqrt{-10}, \sqrt{-1})\}, \\ & E_{1} = \{\boldsymbol{Q}_{2}(\sqrt{1+\sqrt{-10}}, \sqrt{-5}), \boldsymbol{Q}_{2}(\sqrt{5}+\sqrt{-10}, \sqrt{-5})\}. \end{aligned}$$

2-2. $K_i = Q_2(\sqrt{m})$ for m = -1, -5.

In this case, $\mathfrak{p} = (1 + \sqrt{m})$ is the prime ideal of K_i . We see that all elements of $1 + \mathfrak{p}^5$ are square in K_i .

First we deal with the case $K_i = Q_2(\sqrt{-1})$. We get $K_i^{\times}/(K_i^{\times})^2 \cong (\langle 1 + \sqrt{-1} \rangle/\langle 2\sqrt{-1} \rangle) \times (\mathfrak{o}^{\times}/\langle 7, 1 + \mathfrak{p}^5 \rangle)$ by $7 \equiv \sqrt{-1}^2 \mod \mathfrak{p}^5$. We examine elements ε and $\varepsilon(1 + \sqrt{-1})$, where $\varepsilon = a + b(1 + \sqrt{-1})$ for a = 1,3,5,7 and b = 0,1,2,3. We take ε (resp. $\varepsilon(1 + \sqrt{-1})$) such that $\varepsilon, \varepsilon^{\sigma}, 7\varepsilon$ and $7\varepsilon^{\sigma}$ (resp. $\varepsilon, -\sqrt{-1}\varepsilon^{\sigma}, 7\varepsilon$ and $\sqrt{-1}\varepsilon^{\sigma}$) are different modulo \mathfrak{p}^5 each other. Then we get D_4 -extensions as follows: $A_3 = \{Q_2(\sqrt{1 + \sqrt{-1}}, \sqrt{2}), Q_2(\sqrt{3(1 + \sqrt{-1})}, \sqrt{2})\},$ $D_3 = \{Q_2(\sqrt{1 + 3\sqrt{-1}}, \sqrt{10}), Q_2(\sqrt{1 + 5\sqrt{-1}}, \sqrt{10})\},$ $F_2 = \{Q_2(\sqrt{3 + 2\sqrt{-1}}, \sqrt{5}), Q_2(\sqrt{2 + \sqrt{-1}}, \sqrt{5})\}$

$$\sqrt{5}$$
)}.

Next we deal with the case $K_i = Q_2(\sqrt{-5})$. We get $K_i^{\times}/(K_i^{\times})^2 \cong (\langle 1 + \sqrt{-5} \rangle/\langle -4 + 2 \rangle/\langle -5 \rangle) \times (\mathfrak{o}^{\times}/\langle 3, 1 + \mathfrak{p}^5 \rangle)$ by $3 \equiv \sqrt{-5}^2 \mod \mathfrak{p}^5$. We examine elements ε and $\varepsilon(1 + \sqrt{-5})$, where $\varepsilon = a + b(1 + \sqrt{-5})$ for a = 1,3,5,7 and b = 0,1,2,3. We take ε (resp. $\varepsilon(1 + \sqrt{-5})$) such that ε , ε^{σ} , 3ε and $3\varepsilon^{\sigma}$ (resp. ε , $(2 + 5\sqrt{-5})\varepsilon^{\sigma}$, 3ε and $3(2 + 5\sqrt{-5})\varepsilon^{\sigma}$) are different modulo \mathfrak{p}^5 each other. Then we get D_4 -extensions as follows: $B_2 = \{Q_2(\sqrt{-1 + 5\sqrt{-5}}, \sqrt{-2})\}$.

$$B_{2} = \{ \mathbf{Q}_{2}(\sqrt{-1} + 5\sqrt{-5}, \sqrt{-2}) \}, \\ \mathbf{Q}_{2}(\sqrt{3} + 5\sqrt{-5}, \sqrt{-2}) \}, \\ E_{2} = \{ \mathbf{Q}_{2}(\sqrt{1} + \sqrt{-5}, \sqrt{2}), \mathbf{Q}_{2}(\sqrt{5(1 + \sqrt{-5})}, \sqrt{2}) \}, \\ F_{3} = \{ \mathbf{Q}_{2}(\sqrt{3} + 2\sqrt{-5}, \sqrt{-1}), \mathbf{Q}_{2}(\sqrt{4} + \sqrt{-5}, \sqrt{-1}) \}, \\ \sqrt{-1} \} \}. \\ \mathbf{2-3.} \quad K_{i} = \mathbf{Q}_{2}(\sqrt{5}).$$

As K_i/Q_2 is unramified, $\mathfrak{p} = (2)$ is the prime ideal of K_i . We see that all elements of $1 + \mathfrak{p}^3$ are square in K_i . We see that $1 + \theta$, $2 + 3\theta (= (1 + \theta)^2)$, 5, $5(1 + \theta)$ and $5(2 + 3\theta)$ are

square in K_i , where $\theta = (1 + \sqrt{5})/2$. We examine elements ε and 2ε , where $\varepsilon = a + b\theta$ for $0 \le a \le 7, 0 \le b \le 7$ such that either a or b is odd. We take ε or 2ε such that $\varepsilon\eta$ and $\varepsilon^{\sigma}\eta$ are different modulo \mathfrak{p}^3 each other, where η runs over $\{1, 1 + \theta, 2 + 3\theta, 5, 5(1 + \theta), 2 + 7\theta\}$. Then we get D_4 -extensions over Q_2 as follows: $F_1 = \{Q_2(\sqrt{2} + \sqrt{5}, \sqrt{-1}), Q_2(\sqrt{4} + \sqrt{5}, \sqrt{-1}), Q_2(\sqrt{2}(2 + \sqrt{5}), \sqrt{-1}), Q_2(\sqrt{2}(4 + \sqrt{5}), \sqrt{-1})\}$.

2-4. Concluding remark. We get all D_4 -extensions over Q_2 as above. But we doubly counted L, because $K_1(\sqrt{\varepsilon}, \sqrt{\varepsilon^{\sigma}})$ coincides with $K_2(\sqrt{\xi}, \sqrt{\xi^{\tau}})$ for a suitable $\xi \in K_2^{\times}$, where τ is the generator of the Galois group of K_2/Q_2 . By comparing M and K, we get

 $A_1 = A_2 \cup A_3$, where $M = Q_2(\sqrt{-1}, \sqrt{2})$ and $K = Q_2(\sqrt{-1})$ in A_2 and $K = Q_2(\sqrt{-2})$ in A_3 , respectively,

 $B_1 = B_2$, where $M = Q_2(\sqrt{-2}, \sqrt{-5})$ and $K = Q_2(\sqrt{10})$,

 $C_1 = C_2$, where $M = Q_2(\sqrt{-2}, \sqrt{5})$ and $K = Q_2(\sqrt{5})$,

$$D_1 = D_2 \cup D_3$$
, where $M = Q_2(\sqrt{-1}, \sqrt{10})$
and $K = Q_2(\sqrt{-1})$ in D_2

and $K = Q_2(\sqrt{-10})$ in D_3 , respectively, $E_1 = E_2$, where $M = Q_2(\sqrt{2}, \sqrt{-5})$ and K =

 $oldsymbol{Q}_2(\sqrt{2}),$ $F_1=F_2\,\cup\,F_3,$ where $M=oldsymbol{Q}_2(\sqrt{-1}\,,\,\sqrt{5})$ and

 $K = Q_2(\sqrt{-5}) \text{ in } F_2$ and $K = Q_2(\sqrt{-1})$ in F_3 , respectively.

References

- G. Fujisaki: A remark on quaternion extensions of the rational *p*-adic field. Proc. Japan Acad., 66A, 257-259 (1990).
- [2] J.-P. Serre: Une 《formule de masse》 pour les extensions totalement ramifiées de degré donné d'un corps local. C. R. Acad. Sci. Paris, 286, 1031-1036 (1978).
- [3] M. Yamagishi: On the number of Galois pextensions of a local field (to appear in Proc. Amer. Math. Soc.).
- [4] A. Weil: Basic Number Theory. 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York (1973).