Positive Solution of Some Nonlinear Elliptic Equation with Neumann Boundary Conditions*)

By Nicolae TARFULEA

Department of Mathematics, University of Craiova, Romania (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

Abstract: In this note we show that there exists Λ_0 such that, for every $\lambda \in (0, \Lambda_0)$, the problem: $-\Delta u = \lambda u^q + W(x)u^p$ in Ω , u > 0 in Ω , $\frac{\partial u}{\partial n} = 0$ on $\partial \Omega$, where $\Omega \subseteq \mathbb{R}^N$ is a bounded convex domain with smooth boundary, 0 < q < 1 < p and $W \in C^1(\bar{\Omega})$, has a solution u_1 iff $\int_0^\infty W(x) dx < 0. \text{ Moreover: } \|u_\lambda\|_\infty \to 0 \text{ as } \lambda \downarrow 0.$

1. Introduction. In this note we study the Neumann problem for a class of semilinear elliptic equations.

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded convex domain with smooth boundary $\partial \Omega$ and consider the semilinear elliptic problem:

the problem:
$$(\mathbf{1}_{\lambda}) \begin{cases} -\Delta u = \lambda u^{q} + W(x)u^{p} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$

where 0 < q < 1 < p and $W \in C^1(\bar{\Omega})$. The influence of negative part of W is displayed in the following condition:

$$\int_{\mathcal{Q}} W(x) dx < 0.$$

As it turns out, condition (*) was inspired by a corresponding necessary condition derived in [2]. The corresponding Dirichlet problem:

$$\begin{cases} -\Delta u = \lambda u^q + u^b & x \in \Omega \\ u > 0 & x \in \Omega \\ u = 0 & x \in \partial\Omega, \end{cases}$$
 with $0 < q < 1 < p$, has been extensively stu-

died in the paper of Ambrosetti, Brezis and Cerami [1]. Moreover, by the results of Boccardo, Escobedo and Peral [4], these results are extended for the p-laplacian. The purpose of the present note is to study (1) and our main result is the following:

Theorem 1.1. If (*) is satisfied, then there exists $\Lambda_0 \in R$, $\Lambda_0 > 0$, such that, for all $\lambda \in$ $(0, \Lambda_0)$, problem (1_{λ}) has a solution u_{λ} and

$$\|u_{\lambda}\|_{\infty} \to 0$$
 as $\lambda \downarrow 0$.

The proof of the above theorem uses only elementary tools. It is based on the construction of explicit sub and super solutions for (1_1) and the application of the Sattinger results (see [6]).

2. The existence result.

Lemma 2.1. Suppose there exists $\lambda > 0$ such that the problem (1_1) has a solution u_1 . Then necessarily the condition (*) must hold.

Proof. For each $\varepsilon > 0$ put:

$$f_{\varepsilon}(u_{\lambda}) = \frac{1}{1-p} (u_{\lambda} + \varepsilon)^{1-p}.$$

We observe that:

we observe that:

$$-\Delta f_{\varepsilon}(u_{\lambda}) = (u_{\lambda} + \varepsilon)^{-p} (\lambda u_{\lambda}^{q} + W(x)u_{\lambda}^{p}) + p(u_{\lambda} + \varepsilon)^{-p-1} |\nabla u_{\lambda}|^{2} \text{ in } \Omega,$$

$$\frac{\partial f_{\varepsilon}(u_{\lambda})}{\partial n} = (u_{\lambda} + \varepsilon)^{-p} \frac{\partial u_{\lambda}}{\partial n} = 0 \quad \text{on } \partial\Omega.$$

$$-\int_{\Omega} W(x) \frac{u_{\lambda}^{p}}{(u_{\lambda} + \varepsilon)^{p}} dx$$

$$= \int_{\Omega} p(u_{\lambda} + \varepsilon)^{-p-1} |\nabla u_{\lambda}|^{2} dx + \lambda \int_{\Omega} \frac{u_{\lambda}^{p}}{(u_{\lambda} + \varepsilon)^{p}} dx.$$

It follows that there exists $\delta > 0$ such that:

$$\int_{\Omega} W(x) \frac{u_{\lambda}^{p}}{(u_{\lambda} + \varepsilon)^{p}} dx \le -\delta < 0, \text{ for all } \varepsilon \in (0,1).$$

Letting $\varepsilon \to 0$, we have:

$$\int_{\Omega} W(x) \, dx \le -\delta < 0.$$

Throughout, in the following, we suppose that the condition (*) is satisfied.

Lemma 2.2. For all $\lambda > 0$, there exists a subsolution u_{λ} , strictly positive in Ω , for the problem (1_i) .

^{*)} Partially supported by a CNCSU-Grant n° $132 \setminus 95$.

Proof. From [5], we know that the problem:

$$\begin{cases} -\Delta u = \lambda W(x)u & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega \end{cases}$$

has the first eigenvalue $\lambda_1 > 0$ and the associated first eigenfunction φ_1 is strictly positive in Ω .

Let $\varepsilon > 0$. Any $\varepsilon \varphi_1$ is a subsolution of $(\mathbf{1}_{\lambda})$, provided:

 $\varepsilon \lambda_1 W(x) \varphi_1 = -\Delta(\varepsilon \varphi_1) \leq \lambda \varepsilon^q \varphi_1^q + W(x) \varepsilon^p \varphi_1^p$ which is satisfied for all $\varepsilon \in (0, \varepsilon_0)$, with $\varepsilon_0 = \varepsilon_0(\lambda)$ small enough.

Now, we put $\underline{u}_{\lambda} = \varepsilon \varphi_1$ with $\varepsilon \in (0, \varepsilon_0)$ and this ends the proof.

Lemma 2.3. There exists $\Lambda_0 \in R$, $\Lambda_0 > 0$, such that, for every $\lambda \in (0, \Lambda_0)$, the problem $(\mathbf{1}_{\lambda})$ has a supersolution \bar{u}_{λ} .

Proof. We observe that, since $\int_{a}W(x)\,dx$ < 0, there exists $\delta > 0$ such that:

$$\int_{\mathcal{Q}} W^+(x) dx < \left(\frac{1}{1+\delta}\right)^{\rho} \int_{\mathcal{Q}} W^-(x) dx,$$

where

$$W^{+}(x) = \max\{W(x), 0\}, W^{-}(x)$$

= $\max\{-W(x), 0\}, x \in \Omega$.

Let
$$m = \left[\frac{2+\delta}{\delta}\right] + 1$$
, where $\left[\frac{2+\delta}{\delta}\right] =$

 $\max \left\{ n \in Z : n \leq \frac{2+\delta}{\delta} \right\}$, and let:

$$E_k = \left\{ v \in C^1(\bar{\Omega}) : \int_{\Omega} v dx = 0, \|v\|_{\infty} \le \frac{k}{m} \right\},\,$$

where $k \in R$, k > 0. Denote by $H_{\lambda}(x, v)$ the quantity:

H_{\(\lambda\)}
$$(x, v) = \lambda v |v|^{q-1} + W(x)v|v|^{p-1}$$

$$-\frac{1}{vol\ \Omega} \int_{\Omega} (\lambda |v|^q + W(x)|v|^p) dx, x \in \Omega.$$

Observe that if $v \in E_k$ then $H_{\lambda}(x, k+v) \in C^1(\bar{\Omega})$, since k+v>0 on $\bar{\Omega}$, and:

 $|H_{\lambda}(x, k+v)|$

$$\leq \lambda k^{q} \Big(1 + \frac{1}{m} \Big)^{q} + 2 \| W \|_{\infty} k^{p} \Big(1 + \frac{1}{m} \Big)^{p},$$

for every $x\in \Omega$ and $v\in E_k$. It is well know, since $H_\lambda(x,k+v)\in C^1(\bar\Omega)$ for $v\in E_k$ and

since $\int_{\mathcal{Q}} H_{\lambda}(x, k+v) dx = 0$, that the problem:

$$\begin{cases} -\Delta f = H_{\lambda}(x, k+v) & \text{in } \Omega \\ \frac{\partial f}{\partial n} = 0 & \text{on } \partial \Omega \end{cases}$$

is solvable (see, for example, [3], Teorema 7.1.,

pp. 76-78) and there exists a unique solution $f \in C^2(\Omega) \cap C^1(\bar{\Omega})$ verifying: $\int_{\Omega} f dx = 0$. For this solution a priori bounds are available. In fact, for all r > 1, there exists a constant $c_r > 0$, independent of λ , such that:

$$||f||_{W^{2,r}(\Omega)} \le c_r ||H_{\lambda}(x, k+v)||_{L^{r}(\Omega)}.$$

Then, for r > N, it follows that:

 $|| f ||_{\infty} \le c_{\alpha} || H_{\lambda}(x, k + v) ||_{L^{r}(\Omega)}$

$$\leq c_{2}(\operatorname{vol}\Omega)^{\frac{1}{r}} \left[\lambda k^{q} \left(1 + \frac{1}{m} \right)^{q} + 2 \| W \|_{\infty} k^{p} \left(1 + \frac{1}{m} \right)^{p} \right],$$

where c_2 is a positive constant which is independent of λ .

Observe that there exist λ_0 , $k_0 > 0$ such that: $\|f\|_{\infty} \leq \frac{k_0}{m}$, for all $\lambda \in (0, \lambda_0)$. Hence the application: $v \to f$ is well-defined and maps the convex closed set E_{k_0} into a precompact subset of E_{k_0} . By Schauder's theorem, we obtain a function $v \in E_{k_0}$ such that:

$$\begin{cases} -\Delta v^* = H_{\lambda}(x, k_0 + v^*) & \text{in } \Omega \\ \frac{\partial v^*}{\partial n} = 0 & \text{on } \partial \Omega. \end{cases}$$

Let $\bar{u}_{\lambda} = v^* + k_0$. We have that:

$$k_0\left(1+\frac{1}{m}\right) \geq \bar{u}_{\lambda} \geq k_0\left(1-\frac{1}{m}\right)$$

for every $\lambda \in (0, \lambda_0)$. Observe that:

$$\begin{aligned} - \Delta \bar{u}_{\lambda} - \lambda \bar{u}_{\lambda}^{q} - W(x) \bar{u}_{\lambda}^{p} \\ &= -\frac{1}{vol \Omega} \int_{\Omega} \lambda \bar{u}_{\lambda}^{q} + W(x) \bar{u}_{\lambda}^{p} dx \,. \end{aligned}$$

Now, we prove that:

$$\int_{\Omega} W(x) \, \bar{u}_{\lambda}^{p} dx < 0,$$

for all $\lambda \in (0, \lambda_0)$. We have:

$$\int_{\Omega} W^{+}(x) \, \bar{u}_{0}^{p} dx \leq k_{0}^{p} \left(1 + \frac{1}{m}\right)^{p} \int_{\Omega} W^{+}(x) \, dx
\leq \frac{k_{0}^{p}}{\left(1 + \delta\right)^{p}} \left(1 + \frac{1}{m}\right)^{p} \int_{\Omega} W^{-}(x) \, dx
= \left(\frac{1}{1 + \delta}\right)^{p} \left(\frac{1 + \frac{1}{m}}{1 - \frac{1}{m}}\right)^{p} k_{0}^{p} \left(1 - \frac{1}{m}\right)^{p} \int_{\Omega} W^{-}(x) \, dx
\leq \left(\frac{1}{1 + \delta}\right)^{p} \left(\frac{1 + \frac{1}{m}}{1 - \frac{1}{m}}\right)^{p} \int_{\Omega} W^{-}(x) \, \bar{u}_{\lambda}^{p} dx .$$

Since $\left(\frac{1}{1+\delta}\right)^p \left(\frac{1+\frac{1}{m}}{1-\frac{1}{m}}\right)^p < 1$, by the definition

of m, we obtain that:

$$\int_{\Omega} W(x) \, \bar{u}_{\lambda}^{\flat} dx < 0.$$

As a consequence, we can find $\lambda'_0 > 0$ such that, for all $\lambda \in (0, \lambda'_0)$, we have:

$$\int_{O} (\lambda \bar{u}_{\lambda}^{q} + W(x)\bar{u}_{\lambda}^{p}) dx \leq 0.$$

Put $\Lambda_0 = \min\{\lambda_0, \lambda_0'\}$ and we observe that, for every $\lambda \in (0, \Lambda_0)$, the problem $(\mathbf{1}_{\lambda})$ has a supersolution \bar{u}_{λ} such that:

$$k_0\left(1+\frac{1}{m}\right) \geq \|\bar{u}_{\lambda}\|_{\infty} \geq k_0\left(1-\frac{1}{m}\right).$$

Proof of Theorem 1.1. Let $\lambda \in (0, \Lambda_0)$. Clearly, from the proofs of Lemmas 2.2. and 2.3., there exists a subsolution \underline{u}_{λ} and a supersolution \bar{u}_{λ} , for the problem $(\mathbf{1}_{\lambda})$, such that $\underline{u}_{\lambda} \leq \bar{u}_{\lambda}$. From the result of Sattinger (see [6]), we obtain a solution u_{λ} for $(\mathbf{1}_{\lambda})$ such that $\underline{u}_{\lambda} \leq u_{\lambda} \leq \bar{u}_{\lambda}$ in $\bar{\Omega}$. To complete the proof, it remains to show that $\|u_{\lambda}\|_{\infty} \to 0$ as $\lambda \downarrow 0$. But, from the proof of Lemma 2.3.,

we observe that $\|u_{\lambda}\|_{\infty} \leq \|\bar{u}_{\lambda}\|_{\infty} \leq k_0 \Big(1 + \frac{1}{m}\Big),$

for every $\lambda \in (0, \Lambda_0)$. Clearly, following the arguments used in this proof, for $\lambda_0 > 0$ sufficiently small, we can choose $k_0 > 0$ arbitrary small. This completes the proof.

Denote by Λ the quantity:

 $\Lambda = \sup\{\lambda > 0 : (\mathbf{1}_{\lambda}) \text{ has solution}\}.$

Clearly: $\Lambda \geq \Lambda_0 > 0$.

Proposition 2.1. For all $\lambda \in (0, \Lambda)$ the problem (1_{λ}) has a solution.

Proof. This proof is inspired by the proof of Lemma 3.2. in [1]. Let $0 < \lambda < \Lambda$ and let $\mu \in (\lambda, \Lambda)$ such that u_{μ} is a solution of $(\mathbf{1}_{\mu})$. It is easy to show that u_{μ} is a supersolution for $(\mathbf{1}_{\lambda})$. Choosing $\varepsilon > 0$ sufficiently small, we have that $\varepsilon \varphi < u_{\mu}$ and, from the results of Sattinger (see [6]), it follows that $(\mathbf{1}_{\lambda})$ has a solution.

Acknowledgments. The author is grateful to his supervisor Prof. L. Boccardo for his excelent academic guidance and for helpful discussions during the preparation of this work.

References

- [1] A. Ambrosetti, H. Brezis and G. Cerami: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal., 122, 519-543 (1994).
- [2] C. Bandle, M. A. Pozio and A. Tesei: Existence and uniqueness of solutions of nonlinear Neumann problems. Math. Z., 199, 257-278 (1988).
- [3] V. Barbu: Probleme la limita pentru ecuatii cu derivate partiale. Ed. Academiei Romane, Bucuresti (1993).
- [4] L. Boccardo, M. Escobedo and I. Peral: A Dirichlet problem involving critical exponent. Nonlinear Anal. Theory Methods Appl. (to appear).
- [5] Y. H. Huang: On eigenvalue problems of the *p*-laplacian with Neumann boundary condition. Proc. Amer. Math. Soc., vol. 109, no. 1 (1990).
- [6] D. H. Sattinger: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21, 979-1000 (1972).