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1. Introduction. Let G be a noncompact
connected semisimple Lie group with finite center
and P = MAN a parabolic subgroup of G. Let 7,
=Indi(1 ® ¢ ®1) (1 € a}) denote a prlncipal
series representation of G and (7, L*(N

¢THEM gy (N = 6(N)) the noncompact pic-

ture of x,. Let 0, denote an irreducible unitary
representation of N corresponding to ® €
fiz and (S, ds) a subset of MA with measure ds.
In the previous paper [3] we supposed that there
exists a ¢ € S’ (N) satisfying the following
admissible condition: for all w € V7

() 6,(P)o,(P* = n,(]I,
19 0 < [ n,(Ad©w)ds = c5, < o,

where ¢, is independent of w (see [3] for the
notations). Then for all such ¢ we can deduce the
inversion formula:

f@=c) [ [ <G>

_,p(ns)(P(x)dnds for all f € SN,

where ¢+, Y is the inner product of L*(N). A
number of well-known examples of wavelet
transforms arises from this scheme through the
explicit form of ¢. However, in the case of G =
SL(n+2,R) n=1) and N = H,, the 2n+ 1)-
dimensional Heisenberg group, the above formula
does not cover the three examples constructed by
Kalisa and Torrésani (see [4, IV]). Therefore, in
order to obtain a widespread application we need
to generalize this formula. In this paper we sup-
pose that S is an arbitrary measurable set with
map [ : S— G and then we shall consider a dis-
tribution vector ¢ in &’ (N) which depends on
sE€S.

2. Main theorem. We retain the notations
in [3] except that (S, ds) is an arbitrary measur-
able set with map [:S— G. Let ¥ be a family
of ¢, € S (N) with parameter s € S. We call the
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quartet A = (4, S, I, ¥) satisfies the admissible
condition if for all w € V/ and F € L*(R")

j; 6, (T, (1(5) §) 0 (1, (1(5) $)) *Fds = cyF

where g, is realized on L*(R") (see §3) and Co 1S
independent of w.

Theorem 1. Let A = (A, S, I, ¥) satisfy the
admissible condition. Then,

f@=c [ [ <r mGeng,

7, (7l (s)) ¢ (x) diids for all f € S(N).
Proof. As shown in [2] it is enough to prove that

-I;H AR AQL A “iz(inds = Cy [ f"]z_z(ﬁ)’

where ¥, = 7, (I(s)) ¢,. Since a,({f, 7, ()T )
= aw(f)aw(qfs)f, it follows from the Plancherel
formula for L*(N) that

j;“ < f, nl(‘)gbs) “iz(ﬁ)ds
- ./;_[;, l0,(N) o, (TY™ [see(w) dwds

= f tr(aw N foa, W) *o,(¥)dsa, () *>ﬂ(a)) dw
Vi s
= Cy ” f"iz(ﬁ)- U

3. Admissible condition. In what follows
we assume that

(AO) I(S) € MA,
and we shall obtain a sufficient condition of ¥ =
1, S, I, ¥) under which U is admissible. Let q
be a polarizing subalgebra for all @ € V; and @
the corresponding analytic subgroup of N. We
put k = codimg, x,(exp ¥) = 7 (Y € )
and 77 = exp X@rtn) (X)) € q, t(h) € RY)
where 7: R" —>N is a cross-section for @\ N.
Then g, = Indo (x,) and it is realized on
L*(R") as o,@F® = x,XGOR))FEG®Hn)
(cf. [1, p.125]). Here we recall that I(s) € MA
and a weak Malcev basis consists of root vectors
for (G, A). Thus Ad(I(s)) stabilizes @ and
Q\ N respectively. Here we suppose that

(A1) qis ideal,
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(A2) ¢ qr®) = 9@ Xpiy (@D A(s)
(g€ Q,ts R,
where 0 is the Dirac function on R*. For each
SES, g€ Q,t t, € R" it follows that 7(t)
AdU(s) (@r®) = Ad(r(t) () q - 1(t)AdU(s)) r (D)
where Ad(r(t)1(s))q € Q and 7(t)Ad((s))7(?)
= y(t(s, t, t,)) for some t(s, t, t,) € R*. Then
for F € L*(R")
0, (1(s)) ¢, F(t,)

= [_V O U(s) ') o, (W) F(t,) dii

= g+ 108k j: 0. (Ad(U(s) ™) 0, () F(t,) di
N

= 0 [ (1)a, (AdU(s)) M) F(t,) d
N

= li® logl(S)A(s) j‘; (@D X (@

%o (Ad ) 1) Pdq [ SOF (s, ¢, 1)t

= "7 A () GAdT ) I w +
w(s))F(ty),
where log I(s) =loga, if I(s) = ma, € MA.
Therefore, we can deduce that o,(mw,(I(s))¢,) -
0'((,(751(1(3))(08)>i< is the multiplication operator on
L’*(R") corresponding to
m},ws(t) — e—2(31+p) log I(s) | A(S) |2 .
| pAd* GO w + w(s) [,
Next we identify q* with R”™ (m = dim q) and
define the (m, m)-matrix L(s) by
Ad*U()X =L)X (X €q").
We assume the following,
(A3) there exist a measurable set (U, du)
for which
S=UX R"” and ds = dudz,

(A4) there exist (m, m)-matrices A(s),
C,(u) for which
@ O 4w asism,

(A5) w(s) = L(s)h(s) (h(s) € R™) and

there exist d;(u) € R” such that

W) — aaw a<i<m,

7
(A6)
eI det LA |7 A [ = Tw).
Then it follows that

[ etrds = [1 LGS + o) -
S s

| det L(s)A(s) | I'(w)ds,
where @ = Ad*(y(®)w. Here we change the
variable s = (#, x) to s’ = (#’, &) according to
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the map 7, : S— S defined by
u =u,
E =L + wls) = L) (o + hs)).

Since
% = — LOAW C,L(s) (@ + h(s) +
L(s)A(s)d;(u)

= — L(s)A(s) (C;(w) & — d,(w)),
the Jacobian of 7, is given by
(c) det(L(s)A(s)) det(C(u) ® € — D(w)),
where C(w) = (C,(w), ..., C,,(w)) and D(u) =
(d,(w),..., d,(uw). Therefore, if we furthermore
assume that

(A7) T, is of class C' and 1:1 outside a set
of measure zero,

ag o< [[ 1@ Fldet(Cw ®

& — D) |"'Tw) dedu = cy < o,
then we can deduce that

0< fml,w_s(t)ds = g < 00,
S

Theorem 2. If A=, S, 1, V)
(AO)-(A8), then U is admissible.

Remark 3. Let 2 be an admissible quartet
in Theorem 2. Since ¢, is the Dirac function with
respect to t € R" (see (A2)), Theorem 1 essen-
tially gives an inversion formula for J(@). On
the other hand, instead of (A1) and (A2) we sup-
pose that

(A1) qis ideal and q \ @i is abelian,

(A2) dilgr(®) = 6(@e™™ oD A

(g€ Q,t€ RY,

where 0 is the Dirac function on €. Then it is
easy to see that o,(w,(I(s))¢,) is the Fourier
multiplier on L’(R*) corresponding to ¢ '
A FP(Ady (U(s))E + E(s)) where F¢ is the
Fourier transform of ¢ and Ad, is defined by
AdU(9)r(®) = 7(Ad,((s)) D). Therefore, replacing
R” with R*, we can develop the quite same argu-
ment on (A3)-(A8) and then, we can deduce an in-
version formula for S(Q\ N). If we combine these
two formulas for S(Q) and S(Q\N), we can de-
duce the one for (V).

4. Examples. We shall give some examples
of L(s) and h(s) which satisfy (a) and (b) respec-
tively.

al) L(s) ™' = 2,C,(w) + 2,C,(w) + -+ +

z,C,,(u) + C,(),
where C,(u) is a (m, m)-matrix. Then (a) is satis-
fied with A(s) = L.

satisfies
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@2) L(s)™ = exp(x,C,(w) + 1,C,(w) + - - - +

ZnCor(u) + Co(w)) and A(s) = L(s)™".

(a3)

L(s)™' = diag(e™", &9, ., ) C,(w),
here B;(s) is the j-th entry of B(w)x + b,(u)
where B(u) = (b;;(uw)) is a (m, m)-matrix and
b,(u) € R™. Then (a) is satisfied with A(s) =
diag (™, .. ., ) and C;(w) = diag(b,;(w),
by; (). .., b,,;(w)Cy(w).

(b1) h(s) = hy(u) and d,(w) = 0,

(b2) h(s) = L(s) 'b,(u) and

d;(w) = C;(u) by(w),

(b3) h(s) = D(w)x + by(u) provided A(s) = L.

Remark 4. Let U be a subgroup of GL(m, R)
(see (A3)) and put ® = | det(C(w) @ € — D(w)) |
(see (c)). (1) We define L(s) by (al) with C;(w) =
&ul and C,(w) = ful(§,, f € R), and h(s) by
(b3) with D(w) = I and b,(u) = 0. Then L(s)™*
=K E, 2>+ NHuE=(¢E,8&, .. .,E)),
T, (UX R™ =UX R", and

D=|det(EQuE—D|=|1—<5F, us>|.
(2) We suppose that there exists v € R™ such
that v @ D(#) = C(u). Then
P =|detDw)||detwv®@ & — D |
=|detDw)||1— v, E>1.

In this case v®{11(s)D(u)=4$s)C(u) and
v@vae = (22—, D)

(3) Let U = {e} and S = R™. We define L(s) by
(al) and h(s) by (b3) with D=1 and b,= 0.
Then L(s)'=CQzx+ C,, 7, (R™) = &,,(R™)
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where £,(x) = (CQzx+ C) (& + x), and
9= |det(CR®E—D]

When G =SL(n +2,R) (n =1) and N =
H, it is easy to construct the map [:S— MA
for which L(s) is of the above form. Then these
examples (1)-(3) yield the inversion formulas
(a)-(c) in [4, IV] respectively.

Remark 5. Let S = R™. We define L(s) by
(a3) with C,= 1, B = diag(a,, a,, . . . , a,)
(a; # 0 € R) and b, = 0, and we let h(s) = 0.
Then (A4) is satisfied with A(s) = L(s)™" and C,
= a,;E;;, (A6) with A = — p, A(s) =1, and I'=
1. Especially, 7,(R"™ =1, sgn(w)R, =
D and @ = II)_, | ;& |. This is the case tre-
ated in [3, §5].
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