Wavelet Transforms Associated to a Principal Series Representation of Semisimple Lie Groups. II

By Takeshi KAWAZOE

Department of Mathematics, Keio University (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

1. Introduction. Let G be a noncompact connected semisimple Lie group with finite center and P = MAN a parabolic subgroup of G. Let $\pi_{\lambda} = \operatorname{Ind}_{P}^{G}(1 \otimes e^{\lambda} \otimes 1)$ ($\lambda \in \mathfrak{a}_{C}^{*}$) denote a principal series representation of G and $(\pi_{\lambda}, L^{2}(\bar{N}), e^{-2\Im\lambda(H(\bar{n}))}d\bar{n})$ ($\bar{N} = \theta(N)$) the noncompact picture of π_{λ} . Let σ_{ω} denote an irreducible unitary representation of \bar{N} corresponding to $\omega \in \bar{\mathfrak{n}}_{C}^{*}$ and (S, ds) a subset of MA with measure ds. In the previous paper [3] we supposed that there exists a $\psi \in \mathcal{S}'(\bar{N})$ satisfying the following admissible condition: for all $\omega \in V_{T}'$

(i)
$$\sigma_{\omega}(\phi) \sigma_{\omega}(\phi)^* = n_{\phi}(\omega) I$$
,
(ii) $0 < \int_{s} n_{\phi}(Ad(s)\omega) ds = c_{s,\phi} < \infty$,

where $c_{S,\phi}$ is independent of ω (see [3] for the notations). Then for all such ϕ we can deduce the inversion formula:

$$f(x) = c_{S,\phi}^{-1} \int \int_{\bar{N}\times S} \langle f, \pi_{-i\rho}(\bar{n}s) \psi \rangle$$

 $\pi_{-i\rho}(\bar{n}s)\,\psi(x)\,d\bar{n}ds$ for all $f\in \mathcal{S}(\bar{N})$, where $\langle\,\cdot\,\,,\,\cdot\,\rangle$ is the inner product of $L^2(\bar{N})$. A number of well-known examples of wavelet transforms arises from this scheme through the explicit form of ψ . However, in the case of $G=SL(n+2,\mathbf{R})$ $(n\geq 1)$ and $\bar{N}\cong H_n$, the (2n+1)-dimensional Heisenberg group, the above formula does not cover the three examples constructed by Kalisa and Torrésani (see [4, IV]). Therefore, in order to obtain a widespread application we need to generalize this formula. In this paper we suppose that S is an arbitrary measurable set with map $l:S\to G$ and then we shall consider a distribution vector ψ in $\mathcal{S}'(\bar{N})$ which depends on $s\in S$.

2. Main theorem. We retain the notations in [3] except that (S, ds) is an arbitrary measurable set with map $l: S \to G$. Let Ψ be a family of $\psi_s \in \mathscr{S}'(\bar{N})$ with parameter $s \in S$. We call the

quartet $\mathfrak{A} = (\lambda, S, l, \Psi)$ satisfies the admissible condition if for all $\omega \in V_T'$ and $F \in L^2(\mathbf{R}^k)$

$$\int_{S} \sigma_{\omega}(\pi_{\lambda}(l(s)\psi_{s})) \sigma_{\omega}(\pi_{\lambda}(l(s)\psi_{s}))^{*} F ds = c_{\mathfrak{A}} F,$$

where σ_{ω} is realized on $L^2(\boldsymbol{R}^k)$ (see §3) and $c_{\mathfrak{A}}$ is independent of ω .

Theorem 1. Let $\mathfrak{A} = (\lambda, S, l, \Psi)$ satisfy the admissible condition. Then,

$$f(x) = c_{\mathfrak{A}}^{-1} \int \int_{\bar{N} \times S} \langle f, \pi_{\lambda}(\bar{n}l(s)) \psi_{s} \rangle .$$

 $\pi_{\lambda}(\bar{n}l(s))\psi_{s}(x)d\bar{n}ds$ for all $f \in \mathcal{S}(\bar{N})$.

Proof. As shown in [2] it is enough to prove that

$$\int_{S} \|\langle f, \pi_{\lambda}(\cdot) \Psi_{s} \rangle \|_{L^{2}(\overline{N})}^{2} ds = c_{\mathfrak{A}} \|f\|_{L^{2}(\overline{N})}^{2},$$

where $\Psi_s = \pi_{\lambda}(l(s))\psi_s$. Since $\sigma_{\omega}(\langle f, \pi_{\lambda}(\cdot) \Psi_s \rangle)$ = $\sigma_{\omega}(f)\sigma_{\omega}(\Psi_s)^*$, it follows from the Plancherel formula for $L^2(\bar{N})$ that

$$\begin{split} & \int_{S} \| \langle f, \pi_{\lambda}(\cdot) \phi_{s} \rangle \|_{L^{2}(\overline{N})}^{2} ds \\ &= \int_{S} \int_{V_{T}'} \| \sigma_{\omega}(f) \sigma_{\omega}(\Psi_{s})^{*} \|_{HS}^{2} \mu(\omega) d\omega ds \\ &= \int_{V_{T}} \operatorname{tr} \left(\sigma_{\omega}(f) \int_{S} \sigma_{\omega}(\Psi_{s})^{*} \sigma_{\omega}(\Psi_{s}) ds \sigma_{\omega}(f)^{*} \right) \mu(\omega) d\omega \\ &= c_{\mathfrak{A}} \| f \|_{L^{2}(\overline{N})}^{2}. \end{split}$$

3. Admissible condition. In what follows we assume that

(A0)
$$l(S) \subset MA$$
,

and we shall obtain a sufficient condition of $\mathfrak{A}=(\lambda,S,l,\varPsi)$ under which \mathfrak{A} is admissible. Let \mathfrak{A} be a polarizing subalgebra for all $\omega\in V_T'$ and Q the corresponding analytic subgroup of \bar{N} . We put $k=\operatorname{codimq},\,\chi_\omega(\exp Y)=e^{2\pi i\omega(Y)}\,(Y\in\mathfrak{q}),$ and $\bar{n}=\exp X(\bar{n})\gamma(t(\bar{n}))\,(X(\bar{n})\in\mathfrak{q},\,t(\bar{n})\in \mathbf{R}^k)$ where $\gamma:\mathbf{R}^k\to\bar{N}$ is a cross-section for $Q\setminus\bar{N}$. Then $\sigma_\omega=\operatorname{Ind}_{\bar{Q}}^{\bar{N}}(\chi_\omega)$ and it is realized on $L^2(\mathbf{R}^k)$ as $\sigma_\omega(\bar{n})F(t)=\chi_\omega(X(\gamma(t)\bar{n}))F(t(\gamma(t)\bar{n}))$ (cf. [1, p.125]). Here we recall that $l(s)\in MA$ and a weak Malcev basis consists of root vectors for (G,A). Thus Ad(l(s)) stabilizes Q and $Q\setminus\bar{N}$ respectively. Here we suppose that

(A1) q is ideal,

¹⁹⁹¹ Mathematics Subject Classification. Primary 22E30; Secondary 42C20.

$$\begin{array}{ll} \text{(A2)} \ \psi_s(q\gamma(t)) = \psi(q)\chi_{\omega(s)}(q)\delta(t)\Delta(s) \\ (q \in Q, \, t \in {\boldsymbol{R}}^k), \end{array}$$

where δ is the Dirac function on \mathbf{R}^k . For each $s \in S$, $q \in Q$, t, $t_0 \in \mathbf{R}^k$ it follows that $\gamma(t_0)$ $Ad(l(s))(q\gamma(t)) = Ad(\gamma(t_0)l(s))q \cdot \gamma(t_0)Ad(l(s))\gamma(t)$ where $Ad(\gamma(t_0)l(s))q \in Q$ and $\gamma(t_0)Ad(l(s))\gamma(t)$ $= \gamma(t(s, t, t_0))$ for some $t(s, t, t_0) \in \mathbf{R}^k$. Then for $F \in L^2(\mathbf{R}^k)$

$$\sigma_{\omega}(\pi_{\lambda}(l(s))\psi_s)F(t_0)$$

$$= \int_{\bar{N}} \phi_s(l(s)^{-1} \bar{n}) \, \sigma_\omega(\bar{n}) F(t_0) \, d\bar{n}$$

$$=e^{(i\lambda+\rho)\log l(s)}\int_{\bar{N}}\psi_s(Ad(l(s)^{-1})\bar{n})\sigma_\omega(\bar{n})F(t_0)d\bar{n}$$

$$= e^{(i\lambda - \rho) \log l(s)} \int_{\bar{N}} \psi_s(\bar{n}) \sigma_\omega(Ad(l(s)) \bar{n}) F(t_0) d\bar{n}$$

$$= e^{(i\lambda-\rho)\log l(s)} \Delta(s) \int_{\Omega} \psi(q) \chi_{\omega(s)}(q)$$

$$\chi_{\omega}(Ad(\gamma(t_0)l(s))q)dq \int_{\mathbf{R}^k} \delta(t)F(t(s, t, t_0))dt$$

$$= e^{(i\lambda-\rho)\log l(s)} \Delta(s) \hat{\psi}(Ad^*(\gamma(t_0)l(s))\omega + \omega(s))F(t_0),$$

where $\log l(s) = \log a_s$ if $l(s) = m_s a_s \in MA$. Therefore, we can deduce that $\sigma_{\omega}(\pi_{\lambda}(l(s))\psi_s) \cdot \sigma_{\omega}(\pi_{\lambda}(l(s))\psi_s)^*$ is the multiplication operator on $L^2(\mathbf{R}^k)$ corresponding to

$$L^{\hat{z}}(\boldsymbol{R}^{k})$$
 corresponding to $m_{\lambda,\omega,s}(t) = e^{-2(\Im \lambda + \rho) \log l(s)} |\Delta(s)|^{2} \cdot |\hat{\psi}(Ad^{*}(\gamma(t)l(s))\omega + \omega(s))|^{2}.$

Next we identify q^* with R^m ($m = \dim q$) and define the (m, m)-matrix L(s) by

$$Ad^*(l(s))X = L(s)X \quad (X \in \mathfrak{q}^*).$$

We assume the following,

(A3) there exist a measurable set (U, du) for which

$$S = U \times \mathbf{R}^m$$
 and $ds = dudx$,

(A4) there exist (m, m)-matrices A(s), $C_j(u)$ for which

(a)
$$\frac{\partial L(s)^{-1}}{\partial x_i} = A(s) C_j(u) \quad (1 \le j \le m),$$

(A5) $\omega(s) = L(s)h(s)$ $(h(s) \in \mathbf{R}^m)$ and there exist $d_i(u) \in \mathbf{R}^m$ such that

(b)
$$\frac{\partial h(s)}{\partial x_i} = A(s) d_j(u) \quad (1 \le j \le m),$$

 $e^{-2(\Im\lambda+\rho)\log I(s)}|\det L(s)A(s)|^{-1}|\Delta(s)|^2=\varGamma(u).$ Then it follows that

$$\int_{S} m_{\lambda,\omega,s}(t) ds = \int_{S} |\hat{\psi}(L(s)\omega' + \omega(s))|^{2} \cdot |\det L(s)A(s)| \Gamma(u) ds,$$

where $\omega' = Ad^*(\gamma(t))\omega$. Here we change the variable s = (u, x) to $s' = (u', \xi)$ according to

the map $\mathcal{T}_{\omega'}:S \to S$ defined by

$$\begin{cases} u' = u, \\ \xi = L(s)\omega' + \omega(s) = L(s)(\omega' + h(s)). \end{cases}$$

Since

$$\frac{\partial \xi}{\partial x_j} = -L(s)A(s)C_j(u)L(s)(\omega' + h(s)) + L(s)A(s)d_j(u) = -L(s)A(s)(C_j(u)\xi - d_j(u)),$$

the Jacobian of $\mathcal{T}_{\pmb{\omega}'}$ is given by

(c) $\det(L(s)A(s)) \det(C(u) \otimes \xi - D(u))$, where $C(u) = (C_1(u), \ldots, C_m(u))$ and $D(u) = (d_1(u), \ldots, d_m(u))$. Therefore, if we furthermore assume that

(A7) $\mathcal{T}_{\omega'}$ is of class $\textbf{\textit{C}}^{1}$ and 1:1 outside a set of measure zero.

(A8)
$$0 < \int \int_{\mathcal{I}_{\omega}(U \times \mathbf{R}^m)} |\hat{\varphi}(\xi)|^2 |\det(C(u) \otimes \xi - D(u))|^{-1} \Gamma(u) d\xi du = c_{\mathfrak{A}} < \infty,$$

then we can deduce that

$$0<\int_{S}m_{\lambda,\omega,s}(t)\,ds=c_{\mathfrak{A}}<\infty.$$

Theorem 2. If $\mathfrak{U} = (\lambda, S, l, \Psi)$ satisfies (A0)-(A8), then \mathfrak{U} is admissible.

Remark 3. Let \mathfrak{A} be an admissible quartet in Theorem 2. Since ϕ_s is the Dirac function with respect to $t \in \mathbf{R}^k$ (see (A2)), Theorem 1 essentially gives an inversion formula for $\mathfrak{L}(Q)$. On the other hand, instead of (A1) and (A2) we suppose that

(A1)'
$$\mathfrak{q}$$
 is ideal and $\mathfrak{q} \setminus \overline{\mathfrak{n}}$ is abelian,
(A2)' $\psi_s(q\gamma(t)) = \delta(q)e^{2\pi i \langle \xi(s),t \rangle} \psi(t)\Delta(s)$
 $(q \in Q, t \in \mathbf{R}^k),$

where δ is the Dirac function on Q. Then it is easy to see that $\sigma_{\omega}(\pi_{\lambda}(l(s))\psi_s)$ is the Fourier multiplier on $L^2(\boldsymbol{R}^k)$ corresponding to $e^{(i\lambda-\rho)\log l(s)}$ $\Delta(s)\mathcal{F}\psi(Ad_0^*(l(s))\xi+\xi(s))$ where $\mathcal{F}\psi$ is the Fourier transform of ψ and Ad_0 is defined by $Ad(l(s)\gamma(t))=\gamma(Ad_0(l(s))t)$. Therefore, replacing \boldsymbol{R}^m with \boldsymbol{R}^k , we can develop the quite same argument on (A3)-(A8) and then, we can deduce an inversion formula for $\mathcal{S}(Q\setminus\bar{N})$. If we combine these two formulas for $\mathcal{S}(Q)$ and $\mathcal{S}(Q\setminus\bar{N})$, we can deduce the one for $\mathcal{S}(\bar{N})$.

4. Examples. We shall give some examples of L(s) and h(s) which satisfy (a) and (b) respectively

(a1)
$$L(s)^{-1} = x_1 C_1(u) + x_2 C_2(u) + \cdots + x_m C_m(u) + C_0(u),$$

where $C_0(u)$ is a (m, m)-matrix. Then (a) is satisfied with A(s) = I.

(a2)
$$L(s)^{-1} = \exp(x_1 C_1(u) + x_2 C_2(u) + \cdots + x_m C_m(u) + C_0(u))$$
 and $A(s) = L(s)^{-1}$.

 $L(s)^{-1} = \operatorname{diag}(e^{\beta_1(s)}, e^{\beta_2(s)}, \ldots, e^{\beta_m(s)}) C_0(u),$ here $\beta_j(s)$ is the *j*-th entry of $B(u)x + b_0(u)$ where $B(u) = (b_{ij}(u))$ is a (m, m)-matrix and $b_0(u) \in {\boldsymbol R}^m$. Then (a) is satisfied with $A(s) = \operatorname{diag}(e^{\beta_1(s)}, \ldots, e^{\beta_m(s)})$ and $C_j(u) = \operatorname{diag}(b_{1j}(u), b_{2j}(u), \ldots, b_{mj}(u)) C_0(u).$

(b1) $h(s) = h_0(u)$ and $d_i(u) = 0$,

(b2)
$$h(s) = L(s)^{-1}b_0(u)$$
 and $d_i(u) = C_i(u)b_0(u)$,

(b3) $h(s) = D(u)x + b_0(u)$ provided A(s) = I.

Remark 4. Let U be a subgroup of $GL(m, \mathbf{R})$ (see (A3)) and put $\mathcal{D} = |\det(C(u) \otimes \xi - D(u))|$ (see (c)). (1) We define L(s) by (a1) with $C_j(u) = \xi_j uI$ and $C_0(u) = fuI(\xi_j, f \in \mathbf{R})$, and h(s) by (b3) with D(u) = I and $b_0(u) = 0$. Then $L(s)^{-1} = (\langle \mathcal{E}, x \rangle + f)u$ ($\mathcal{E} = (\xi_1, \xi_2, \ldots, \xi_m)$), $\mathcal{F}_{\omega'}(U \times \mathbf{R}^m) = U \times \mathbf{R}^m$, and

 $\mathscr{D} = |\det(\mathcal{E} \otimes u\xi - I)| = |1 - \langle \mathcal{E}, u\xi \rangle|.$

(2) We suppose that there exists $v \in \mathbb{R}^m$ such that $v \otimes D(u) = C(u)$. Then

$$\mathcal{D} = |\det D(u)| |\det(v \otimes \xi - I)|$$

= $|\det D(u)| |1 - \langle v, \xi \rangle|.$

In this case $v \otimes A(s)D(u) = A(s)C(u)$ and $v \otimes \nabla h(s) = \left(\frac{\partial L(s)^{-1}}{\partial x_1}, \dots, \frac{\partial L(s)^{-1}}{\partial x_m}\right)$.

(3) Let $U = \{e\}$ and $S = \mathbf{R}^m$. We define L(s) by (a1) and h(s) by (b3) with D = I and $b_0 = 0$. Then $L(s)^{-1} = C \otimes x + C_0$, $\mathcal{T}_{w'}(\mathbf{R}^m) = \xi_{w'}(\mathbf{R}^m)$

where $\xi_{\omega'}(x) = (C \otimes x + C_0)^{-1}(\omega' + x)$, and $\mathcal{D} = |\det(C \otimes \xi - I)|$.

When $G = SL(n + 2, \mathbf{R})$ $(n \ge 1)$ and $\bar{N} \cong H_n$, it is easy to construct the map $l: S \to MA$ for which L(s) is of the above form. Then these examples (1)-(3) yield the inversion formulas (a)-(c) in [4, IV] respectively.

Remark 5. Let $S = \mathbf{R}^m$. We define L(s) by (a3) with $C_0 = I$, $B = \operatorname{diag}(a_1, a_2, \ldots, a_m)$ $(a_i \neq 0 \in \mathbf{R})$ and $b_0 = 0$, and we let h(s) = 0. Then (A4) is satisfied with $A(s) = L(s)^{-1}$ and $C_j = a_j E_{jj}$, (A6) with $\lambda = -\rho$, $\Delta(s) \equiv 1$, and $\Gamma \equiv 1$. Especially, $\mathcal{T}_{\omega'}(\mathbf{R}^m) = \prod_{i=1}^m \operatorname{sgn}(\omega_i')\mathbf{R}_+ = D_{\operatorname{sgn}\omega'}$ and $\mathfrak{D} = \prod_{j=1}^m |a_j\xi_j|$. This is the case treated in [3, §5].

References

- [1] Corwin, L. and Greenleaf, F. P.: Representations of Nilpotent Lie Groups and Their Applications. Part 1. Basic Theory and Examples, Cambridge studies in advanced mathematics, 18, Cambridge University Press, Cambridge (1990).
- [2] Kawazoe, T.: Wavelet transform associated to an induced representation of SL(n+2, R) (to appear in Ann. Inst. Henri Poincaré).
- [3] Kawazoe, T.: Wavelet transforms associated to a principal series representation of semisimple Lie groups. I. Proc. Japan Acad., 71A, 154-157 (1995).
- [4] Kalisa, C. and Torrésani, B.: *N*-dimensional affine Weyl-Heisenberg wavelets. Ann. Inst. Henri Poincaré, **59**, 201-236 (1993).