A Construction of Exceptional Simple Graded Lie Algebras of the Second Kind

By Satoshi GOMYO

Department of Mathematics, Yokohama City University (Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1995)

- **§0.** Introduction. Let $g = \sum_{k=-2}^{2} g_k$ be a graded Lie algebra of the second kind (shortly 2-GLA). In [5], Kaneyuki gave the classification of exceptional real simple 2-GLA's and listed up the subalgebras g_0 and the dimension of $g_k(k=$ 1, 2). Since the subspaces $g_k(k \neq 0)$ were not explicitly determined in [5], we will give an explicit representation of g_k in this paper. Up to the present, several constructions of 2-GLA have been thought out. Allison ([1]) gave a construction of 2-GLA starting from structurable algebra. His construction is useful but some exceptional real simple 2-GLA's can not be obtained by his construction. Details and proofs will be found in [3].
- §1. Methods of construction. In this section, we give two methods of construction of 2-GLA.
- 1.1 Let g_0 be a real Lie algebra and $V_k(k)$ = 1, 2) a real vector space with a nondegenerate symmetric bilinear form (,). For each element \boldsymbol{u} of $V_{\mathbf{k}}$, the element $oldsymbol{u}^{oldsymbol{*}}$ of the dual space $V_{\mathbf{k}}^{oldsymbol{*}}$ is defined by $u^*(v) = (u, v)$ $(v \in V_k)$. Let ρ_k be a representation of g_0 on $V_k(k=1, 2)$. By ρ_k^* , we denote the dual representation of $\rho_{\mathbf{k}}$, that is

$$(\rho_k^*(X)u^*)(v) + u^*(\rho_k(X)v) = 0$$

 $(u, v \in V_k, X \in g_0).$

Now, we assume that the following bilinear maps are given.

$$\Delta: V_2 \times V_1^* \to V_1, \circ: V_1 \times V_1 \to V_2$$
 (antisymmetric)

$$\times: V_1 \times V_1^* \longrightarrow g_0, \ *: V_2 \times V_2^* \stackrel{\circ}{\longrightarrow} g_0.$$
 Let us consider the real vector space

Let us consider the real vector space

$$g = g_0 \oplus V_1 \oplus V_1^* \oplus V_2 \oplus V_2^*.$$

We define a bilinear bracket operation in g as follows:

$$(X, \boldsymbol{u}, \boldsymbol{v}^*, \boldsymbol{x}, \boldsymbol{y}^*)$$

= $[(X_1, \boldsymbol{u}_1, \boldsymbol{v}_1^*, \boldsymbol{x}_1, \boldsymbol{y}_1^*), (X_2, \boldsymbol{u}_2, \boldsymbol{v}_2^*, \boldsymbol{x}_2, \boldsymbol{y}_2^*)],$
where

$$\begin{cases} X = [X_1, X_2] + \boldsymbol{u}_1 \times \boldsymbol{v}_2^* - \boldsymbol{u}_2 \times \boldsymbol{v}_1^* \\ + \boldsymbol{x}_1 * \boldsymbol{y}_2^* - \boldsymbol{x}_2 * \boldsymbol{y}_1^*, \\ \boldsymbol{u} = \rho_1(X_1)\boldsymbol{u}_2 - \rho_1(X_2)\boldsymbol{u}_1 + \boldsymbol{x}_1 \Delta \boldsymbol{v}_2^* - \boldsymbol{x}_2 \Delta \boldsymbol{v}_1^*, \\ \boldsymbol{v}^* = \rho_1^*(X_1)\boldsymbol{v}_2^* - \rho_1^*(X_2)\boldsymbol{v}_1^* \\ - (\boldsymbol{y}_1 \Delta \boldsymbol{u}_2^*)^* + (\boldsymbol{y}_2 \Delta \boldsymbol{u}_1^*)^*, \\ \boldsymbol{x} = \rho_2(X_1)\boldsymbol{x}_2 - \rho_2(X_2)\boldsymbol{x}_1 + \boldsymbol{u}_1 \cdot \boldsymbol{u}_2, \\ \boldsymbol{y}^* = \rho_2^*(X_1)\boldsymbol{y}_2^* - \rho_2^*(X_2)\boldsymbol{y}_1^* - (\boldsymbol{v}_1 \cdot \boldsymbol{v}_2)^*. \end{cases}$$

In [3], we give a necessary and sufficient condition for g to be a Lie algebra. When g is a Lie algebra, obviously $g = \sum_{k=-2}^{2} g_k (g_k = V_k, g_{-k} =$ V_k^*) becomes a 2-GLA.

1.2. Let $g = \sum_{k=-2}^{2} g_k$ be a 2-GLA and γ a grade-preserving involution (= involutive automorphism) of g. Put

$$g_{\gamma} = \{ X \in \mathfrak{g} \mid \gamma(X) = X \}, (g_k)_{\gamma} = \{ X \in g_k \mid \gamma(X) = X \}.$$

If $(g_{\pm 2})_r \neq (0)$, then the subalgebra $g_r = \sum_{k=-2}^2$ $(g_k)_r$ also becomes a 2-GLA.

§2. The main theorem. Using g_0 and dim g_k listed up in [5], we construct the corresponding 2-GLA's by the methods described in §1. Then we have the following theorem.

Theorem 1. The exceptional real simple graded Lie algebras of the second kind are realized as listed in Table I.

In Table I, we use the following notations.

 \boldsymbol{C} (resp. \boldsymbol{C}'): the algebra of complex (resp. split complex) numbers

 \boldsymbol{H} (resp. \boldsymbol{H}'): the algebra of quaternion (resp. split quaternion) numbers

C (resp. C'): the division Cayley (resp. split Cayley) algebra

For a real vector space V, its complexification $\{u + iv \mid u, v \in V\}$ is denoted by V^{c} . We do not identify \mathbf{R}^c with \mathbf{C} , but denote \mathbf{R}^c by \mathbf{C} .

From now on, we explain the contents of Table I.

(1) In case of (e1) \sim (e9) and (e24) \sim (e27):

Table I

	9	${g}_0$	g_1	g_2
(e1)	e ₈₍₈₎	$e_{_{7(7)}} \oplus extbf{ extit{R}}$	$\mathfrak{P}_{\mathfrak{C}'}$	\boldsymbol{R}
(e2)	$e_{8(-24)}$	$\mathfrak{e}_{7(-25)} igoplus m{R}$	$\mathfrak{P}_{\mathfrak{C}}$	\boldsymbol{R}
(e3)	$\mathfrak{f}_{4(4)}$	$\mathfrak{sp}(3, \mathbf{R}) \oplus \mathbf{R}$	$\mathfrak{P}_{m{R}}$	R
(e4)	e ₆₍₆₎	$\mathfrak{sl}(6, \mathbf{R}) \oplus \mathbf{R}$	$\mathfrak{P}_{C'}$	\boldsymbol{R}
(e5)	e ₆₍₂₎	$\mathfrak{su}(3,3) \oplus \pmb{R}$	$\mathfrak{P}_{oldsymbol{C}}$	R
(e6)	e ₇₍₇₎	$\mathfrak{so}(6,6) \oplus extbf{ extit{R}}$	$\mathfrak{P}_{m{H}'}$	R
(e7)	$e_{7(-5)}$	$\operatorname{so}^*(12) \oplus R$	$\mathfrak{P}_{m{H}}$	\boldsymbol{R}
(e8)	$e_{6(-14)}$	$\mathfrak{su}(1,5) \oplus extbf{ extit{R}}$	$(\mathfrak{P}_{\boldsymbol{C}}^{c})_{+r}$	iR
(e9)	$\mathfrak{e}_{7(-25)}$	$80(2,10) \oplus extbf{ extit{R}}$	$(\mathfrak{P}^{\mathcal{C}}_{\boldsymbol{H}})_{+r}$	iR
(e10)	$\mathfrak{g}_{\scriptscriptstyle 2(2)}$	$\mathfrak{sl}(2, \mathbf{R}) \oplus \mathbf{R}$	$R_3[e_1, e_2]$	\boldsymbol{R}
(e11)	e ₆₍₆₎	$80(4,4) \oplus \pmb{R} \oplus \pmb{R}$	${\mathfrak C}' \oplus {\mathfrak C}'$	C '
(e12)	$e_{6(-26)}$	$80(8) \oplus R \oplus R$	${\mathfrak A} \oplus {\mathfrak A}$	Œ
(e13)	e ₆₍₂₎	$80(3,5) \oplus extbf{\emph{R}} \oplus extbf{\emph{iR}}$	${\mathfrak C}' \oplus {\it i}{\mathfrak C}'$	C ′00
(e14)	e ₆₍₋₁₄₎	$80(1,7) \oplus extbf{ extit{R}} \oplus extit{ extit{i}} extbf{ extit{R}}$	${f v} \oplus {m i} {f v}$	\mathfrak{C}^{00}
(e15)	f ₄₍₄₎	$rak{go}(3,4) \oplus extbf{ extit{R}}$	& ′	\mathfrak{C}_0'
(e16)	$f_{4(-20)}$	$\operatorname{80}(7) \oplus \mathbf{\mathit{R}}$	Œ	$\mathfrak{C}_{\mathrm{o}}$
(e17)	e ₆₍₆₎	$\mathfrak{gl}(5, extbf{ extit{R}})\oplus\mathfrak{gl}(2, extbf{ extit{R}})\oplus extbf{ extit{R}}$	${m R}^2 \oplus {({m R}^5)}_2$	$(\boldsymbol{R}^5)_{_{\boldsymbol{4}}}$
(e18)	e ₇₍₇₎	$\mathfrak{sl}(7,m{R})\oplusm{R}$	$(\boldsymbol{R}^7)_3$	$(\boldsymbol{R}^7)_6$
(e19)	e ₇₍₇₎	$so(5,5) \oplus si(2,\textbf{\textit{R}}) \oplus \textbf{\textit{R}}$	${m R}^2 \oplus \wedge^+(U_{\scriptscriptstyle (5)})$	$W_{\scriptscriptstyle (5)}$
(e20)	$e_{7(-25)}$	$\mathfrak{so}(1,9) \oplus \mathfrak{sl}(2, extbf{ extit{R}}) \oplus extbf{ extit{R}}$	$R^2 \oplus (\wedge^+(U_{(5)})^c)_{l_{1,9}}$	$(W^{\mathrm{C}}_{_{(5)}})_{l_{1,9}}$
(e21)	e ₇₍₋₅₎	$\mathfrak{so}(3,7) \oplus \mathfrak{su}(2) \oplus extbf{ extit{R}}$	$(\mathbf{R}^2 \oplus \wedge^+ (U_{(5)})^c)_{+l_{3,7}}$	$(W_{(5)}^{C})_{l_{3,7}}$
(e22)	e ₈₍₈₎	$80(7,7) \oplus extbf{ extit{R}}$	$\wedge^+(U_{\scriptscriptstyle (7)})$	$W_{\scriptscriptstyle (7)}$
(e23)	$e_{8(-24)}$	$so(3,11) \oplus {\it R}$	$(\wedge^+(U_{(7)})^c)_{l_{3,11}}$	$(W_{(7)}^{\mathtt{C}})_{l_{3,11}}$
(e24)	e ₈ ^C	$\mathfrak{e}_7^C \oplus C$	$\mathfrak{P}^{c}_{\mathfrak{C}}$	C
(e25)	\mathfrak{f}_4^C	$\mathfrak{sp}(3, C) \oplus C$	$\mathfrak{P}^{c}_{\boldsymbol{R}}$	C
(e26)	e_6^C	$\mathfrak{sl}(6, C) \oplus C$	$\mathfrak{P}^{c}_{\boldsymbol{C}}$	C
(e27)	e_7^C	$80(12, C) \oplus C$	$\mathfrak{P}^{\mathcal{C}}_{oldsymbol{H}}$	C
(e28)	\mathfrak{g}_2^C	$\mathfrak{gl}(2, C) \oplus C$	$C_3[e_1, e_2]$	C
(e29)	e_6^C	$80(8, C) \oplus C \oplus C$	$\mathfrak{C}_c \oplus \mathfrak{C}_c$	\mathfrak{C}^c
(e30)	\mathfrak{f}_4^C	$80(7, C) \oplus C$	\mathfrak{C}^{c}	\mathfrak{C}_0^C
(e31)	e_6^C	$\mathfrak{gl}(5, C) \oplus \mathfrak{gl}(2, C) \oplus C$	$(\boldsymbol{R}^2 \otimes (\boldsymbol{R}^5)_2)^C$	$(\boldsymbol{R}^5)_{4}^{C}$
(e32)	e_7^C	⊗ ι(7, C) ⊕ C	$(\boldsymbol{R}^7)_3^C$	$(\boldsymbol{R}^7)_6^C$
(e33)	e_7^C	$80(10, C) \oplus 81(2, C) \oplus C$	$(\boldsymbol{R}^2 \otimes \wedge^+(U_{\scriptscriptstyle (5)}))^{\scriptscriptstyle C}$	$W_{\scriptscriptstyle (5)}^{c}$
(e34)	e_8^C	$so(14, C) \oplus C$	$\wedge^+(U_{(7)})^c$	$W_{(7)}^{C}$

Let

$$\mathfrak{J}_F = \{X \in M(3, F) \mid X^* = X\}$$

 $(F = R, C, C', H, H', \mathfrak{C}, \mathfrak{C}')$

be a real Jordan algebra and $\operatorname{Der} \mathfrak{F}_F$ the derivation algebra of \mathfrak{J}_{F} . For any $X \in \mathfrak{J}_{F}$, an endomorphism \tilde{X} of \mathfrak{F}_F is defined by

$$\tilde{X}(Y) = \frac{1}{2} (XY + YX) \quad (Y \in \mathfrak{F}_F).$$

Put

$$\mathfrak{J}_{F0} = \{ X \in \mathfrak{J}_F \mid \text{tr} X = 0 \},$$

$$\tilde{\mathfrak{J}}_{F0} = \{ \tilde{X} \mid X \in \mathfrak{J}_{F0} \},\,$$

$$\mathbf{e}_{6F} = \mathrm{Der} \, \mathfrak{F}_F \oplus \widetilde{\mathfrak{F}}_{F0}, \, \mathbf{e}_{7F} = \mathbf{e}_{6F} \oplus \mathfrak{F}_F \oplus \mathfrak{F}_F \oplus \mathbf{R},$$

$$\mathfrak{P}_F = \mathfrak{I}_F \oplus \mathfrak{I}_F \oplus R \oplus R,$$

 $e_{8F} = e_{6F} \oplus \mathfrak{P}_F \oplus \mathfrak{P}_F \oplus R \oplus R \oplus R.$

Then, it is well known that e_{8F} is a real 2-GLA

2-GLA's (e1) \sim (e7) are obtained as e_{8F} (F =(C', C, R, C', C, H', H). 2-GLA's (e24) \sim (e27) are obtained by complexification of (e1), (e3), (e4) and (e6), respectively. The 2-GLA (e8) (reap. (e9)) is obtained by the method described in 1.2 from a grade-preserving involution of (e26) (resp. (e27)).

Hereafter, we outline only representations ρ_k of g_0 in Table I.

(2) In case of (e10) and (e28):

Let $R_3[e_1, e_2]$ be a real vector space of all homogeneous polynomials of degree 3 in variables e_1 and e_2 . Define a representation ρ of $\mathfrak{SI}(2,$ \boldsymbol{R}) on $\boldsymbol{R}_3[e_1, e_2]$ by

 $\rho(X)(e_i e_j e_k) = (X e_i) e_j e_k + e_i (X e_j) e_k + e_i e_j (X e_k).$ In (e10), the representation $\rho_k(k=1,2)$ of g_0 on g_k is as follows:

$$\rho_1(X, r) u = \rho(X) u + r u, \rho_2(X, r) s = 2r.$$

The 2-GLA (e28) is obtained by complexification of (e10).

(3) In case of (e11)~(e16), (e29) and (e30):

In (e29), using automorphisms of $\mathfrak{so}(8, \mathbb{C})$ π and λ which were defined in [2], we define the representation $\rho_k(k=1,2)$ of g_0 on g_k as fol-

$$\rho_1(X, s, t) (x \oplus y) = (\pi X + s) x \oplus (\lambda \pi X + t) y,$$

$$\rho_2(X, s, t) u = (X + s + t) u.$$

For $F = \mathfrak{C}'$ or \mathfrak{C} put

$$F_0 = \{x \in F \mid \text{Re}x = 0\},\$$

$$F_{00} = \{ ia + x \in F^{c} | a \in R, x \in F_{0} \},$$

where $\mathbf{Re}x$ means the real part of x.

2-GLA's (e11) \sim (e16) and (e30) are obtained by the method described in 1.2 from (e29).

(4) In case of (e17), (e18), (e31) and (e32):

Let $(\mathbf{R}^n)_k := \wedge^k (\mathbf{R}^n)$ be the k-th exterior power of R^n . Define a representation μ_k of $\mathfrak{Sl}(n, \mathbf{R})$ on $(\mathbf{R}^n)_k$ by

$$\mu_k(X)(x_1 \wedge \cdots \wedge x_k)$$

$$=\sum_{j=1}^k x_1 \wedge \cdots \wedge (Xx_j) \wedge \cdots \wedge x_k.$$

The representation $\rho_k(k=1, 2)$ of g_0 on g_k is as follows:

(a) In case of (e17).

$$\rho_1(X, A, r) (a \otimes \mathbf{u})$$

$$= (Aa) \otimes \mathbf{u} + a \otimes (\mu_2(-{}^tX)\mathbf{u}) + r(a \otimes \mathbf{u}),$$

$$\rho_2(X, A, r)\mathbf{x} = (X + 2r)\mathbf{x}.$$

(b) In case of (e18).

$$\rho_1(X, r)\mathbf{u} = \mu_3(-{}^tX)\mathbf{u} + r\mathbf{u},$$

$$\rho_2(X, r)\mathbf{x} = (X + 2r)\mathbf{x}.$$

The 2-GLA (e31) (resp. (e32)) is obtained by complexification of (e17) (resp. (e18)).

(5) In case of (e19)~(e23), (e33) and (e34): Let $W_{(n)}$ be the 2n-dimensional real vector space with a basis $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$. We define a bilinear from Q on $W_{(n)}$ by

$$Q(e_i, e_j) = 0, Q(f_i, f_j) = 0,$$

 $Q(e_i, f_j) = Q(f_i, e_j) = \delta_{ij}.$

Let $U_{(n)}$ be the $\{e_1, \ldots, e_n\}$ and put $\wedge^+ U_{(n)} = \sum_{l: \text{even}} \wedge^l U_{(n)}.$ Let $U_{\scriptscriptstyle (n)}$ be the subspace of $W_{\scriptscriptstyle (n)}$ generated by

$$\wedge^+ U_{(n)} = \sum_{l \text{ even}} \wedge^l U_{(n)}$$

Let $d\varphi$ be a half-spin representation of $\mathfrak{So}(n, n)$ on \wedge $^+U_{(n)}$. The representation $\rho_k(k=1,2)$ of g_0 on g_k is as follows:

(a) In case of (e19).

$$\rho_1(X, A, r) (a \otimes \mathbf{u})$$

$$= (Aa) \otimes \mathbf{u} + a \otimes (d\varphi(X)\mathbf{u}) + r(a \otimes \mathbf{u}),$$

$$\rho_2(X, A, r)x = (X + 2r)x.$$

(b) In case of (e22).

$$\rho_1(X, r)\mathbf{u} = d\varphi(X)\mathbf{u} + r\mathbf{u},$$

$$\rho_2(X, r)\mathbf{x} = (X + 2r)\mathbf{x}.$$

The 2-GLA (e33) (resp. (e34)) is obtained by complexification of (e19) (resp. (e22)). 2-GLA's (e20) and (e21) are obtained by the method described in 1.2 from (e33). The 2-GLA (e23) is obtained by the method described in 1.2 from (e34).

Remark. 2-GLA's (e17) and (e31) can not be obtained by Allison's construction.

References

- [1] B. N. Allison: Models of isotropic simple Lie algebras. Comm. Algebra, 7, 1835-1875 (1979).
- [2] H. Freudenthal: Oktaven, Ausnahmegruppen und

- Oktavengeometrie. Math. Inst. Rijkuniv. to Utrecht (1951).
- [3] S. Gomyo: Realizations of exceptional simple graded Lie algebras of the second kind (preprint).
- [4] T. Imai and I. Yokota: Simply connected compact simple Lie group $G=E_{8(-248)}$ of type E_8 . J. Math. Kyoto Univ., 21, 741-762 (1981).
- [5] S. Kaneyuki: On the subalgebra g_0 and g_{ev} of semisimple graded Lie algebras. J. Math. Soc. Japan, 45, 1–19 (1993).
- [6] O. N. Smirnov: Simple and semisimple structurable algebras. Algebra and Logic, 29, 377-394 (1990).