A Construction of Exceptional Simple Graded Lie Algebras of the Second Kind

By Satoshi Gomyo
Department of Mathematics, Yokohama City University
(Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1995)

§0. Introduction. Let $\mathrm{g}=\sum_{k=-2}^{2} g_{k}$ be a graded Lie algebra of the second kind (shortly 2-GLA). In [5], Kaneyuki gave the classification of exceptional real simple 2-GLA's and listed up the subalgebras g_{0} and the dimension of $g_{k}(k=$ $1,2)$. Since the subspaces $g_{k}(k \neq 0)$ were not explicitly determined in [5], we will give an explicit representation of g_{k} in this paper. Up to the present, several constructions of 2-GLA have been thought out. Allison ([1]) gave a construction of 2 -GLA starting from structurable algebra. His construction is useful but some exceptional real simple 2-GLA's can not be obtained by his construction. Details and proofs will be found in [3].
§1. Methods of construction. In this section, we give two methods of construction of 2-GLA.
1.1 Let g_{0} be a real Lie algebra and $V_{k}(k$ $=1,2$) a real vector space with a nondegenerate symmetric bilinear form (,). For each element \boldsymbol{u} of V_{k}, the element \boldsymbol{u}^{*} of the dual space V_{k}^{*} is defined by $\boldsymbol{u}^{*}(\boldsymbol{v})=(\boldsymbol{u}, \boldsymbol{v})\left(\boldsymbol{v} \in V_{k}\right)$. Let ρ_{k} be a representation of g_{0} on $V_{k}(k=1,2)$. By ρ_{k}^{*}, we denote the dual representation of ρ_{k}, that is

$$
\begin{gathered}
\left(\rho_{k}^{*}(X) \boldsymbol{u}^{*}\right)(\boldsymbol{v})+\boldsymbol{u}^{*}\left(\rho_{k}(X) \boldsymbol{v}\right)=0 \\
\left(\boldsymbol{u}, \boldsymbol{v} \in V_{k}, X \in g_{0}\right) .
\end{gathered}
$$

Now, we assume that the following bilinear maps are given.

$$
\begin{gathered}
\Delta: V_{2} \times V_{1}^{*} \rightarrow V_{1}, \circ: V_{1} \times V_{1} \rightarrow V_{2} \\
\times: V_{1} \times V_{1}^{*} \rightarrow g_{0}, *: V_{2} \times V_{2}^{*} \rightarrow g_{0} .
\end{gathered}
$$

Let us consider the real vector space

$$
\mathrm{g}=g_{0} \oplus V_{1} \oplus V_{1}^{*} \oplus V_{2} \oplus V_{2}^{*}
$$

We define a bilinear bracket operation in g as follows:

```
\(\left(X, \boldsymbol{u}, \boldsymbol{v}^{*}, \boldsymbol{x}, \boldsymbol{y}^{*}\right)\)
    \(=\left[\left(X_{1}, \boldsymbol{u}_{1}, \boldsymbol{v}_{1}^{*}, \boldsymbol{x}_{1}, \boldsymbol{y}_{1}^{*}\right),\left(X_{2}, \boldsymbol{u}_{2}, \boldsymbol{v}_{2}^{*}, \boldsymbol{x}_{2}, \boldsymbol{y}_{2}^{*}\right)\right]\),
``` where
\(\left\{\begin{array}{l}X=\left[X_{1}, X_{2}\right]+\boldsymbol{u}_{1} \times \boldsymbol{v}_{2}^{*}-\boldsymbol{u}_{2} \times \boldsymbol{v}_{1}^{*} \\ +\boldsymbol{x}_{1} * \boldsymbol{y}_{2}^{*}-\boldsymbol{x}_{2} * \boldsymbol{y}_{1}^{*}, \\ \boldsymbol{u}=\rho_{1}\left(X_{1}\right) \boldsymbol{u}_{2}-\rho_{1}\left(X_{2}\right) \boldsymbol{u}_{1}+\boldsymbol{x}_{1} \Delta \boldsymbol{v}_{2}^{*}-\boldsymbol{x}_{2} \Delta \boldsymbol{v}_{1}^{*}, \\ \boldsymbol{v}^{*}=\rho_{1}^{*}\left(X_{1}\right) \boldsymbol{v}_{2}^{*}-\rho_{1}^{*}\left(X_{2}\right) \boldsymbol{v}_{1}^{*}-\left(\boldsymbol{y}_{1} \Delta \boldsymbol{u}_{2}^{*}\right)^{*}+\left(\boldsymbol{y}_{2} \Delta \boldsymbol{u}_{1}^{*}\right)^{*}, \\ \boldsymbol{x}=\rho_{2}\left(X_{1}\right) \boldsymbol{x}_{2}-\rho_{2}\left(X_{2}\right) \boldsymbol{x}_{1}+\boldsymbol{u}_{1} \circ \boldsymbol{u}_{2}, \\ \boldsymbol{y}^{*}=\rho_{2}^{*}\left(X_{1}\right) \boldsymbol{y}_{2}^{*}-\rho_{2}^{*}\left(X_{2}\right) \boldsymbol{y}_{1}^{*}-\left(\boldsymbol{v}_{1}{ }^{\circ} \boldsymbol{v}_{2}\right)^{*} .\end{array}\right.\)

In [3], we give a necessary and sufficient condition for \(\mathfrak{g}\) to be a Lie algebra. When \(g\) is a Lie algebra, obviously \(\mathrm{g}=\sum_{k=-2}^{2} g_{k}\left(g_{k}=V_{k}, g_{-k}=\right.\) \(V_{k}^{*}\)) becomes a 2 -GLA.
1.2. Let \(\mathrm{g}=\sum_{k=-2}^{2} g_{k}\) be a \(2-\mathrm{GLA}\) and \(\gamma\) a grade-preserving involution (\(=\) involutive automorphism) of g . Put
\(\mathrm{g}_{\gamma}=\{X \in \mathrm{~g} \mid \gamma(X)=X\}\),
\(\left(g_{k}\right)_{r}=\left\{X \in g_{k} \mid \gamma(X)=X\right\}\).
If \(\left(g_{ \pm 2}\right)_{r} \neq(0)\), then the subalgebra \(g_{r}=\sum_{k=-2}^{2}\) \(\left(g_{k}\right)_{r}\) also becomes a 2-GLA.
§2. The main theorem. Using \(g_{0}\) and dim \(g_{k}\) listed up in [5], we construct the corresponding 2-GLA's by the methods described in \(\S 1\). Then we have the following theorem.

Theorem 1. The exceptional real simple graded Lie algebras of the second kind are realized as listed in Table I.

In Table I, we use the following notations.
\(\boldsymbol{C}\) (resp. \(\boldsymbol{C}^{\prime}\)): the algebra of complex (resp. split complex) numbers
\(\boldsymbol{H}\) (resp. \(\boldsymbol{H}^{\prime}\)): the algebra of quaternion (resp. split quaternion) numbers
\({ }^{〔}\) (resp. © \({ }^{\prime}\)): the division Cayley (resp. split Cayley) algebra

For a real vector space \(V\), its complexification \(\{u+\boldsymbol{i} v \mid u, v \in V\}\) is denoted by \(V^{c}\). We do not identify \(\boldsymbol{R}^{C}\) with \(\boldsymbol{C}\), but denote \(\boldsymbol{R}^{C}\) by \(\boldsymbol{C}\).

From now on, we explain the contents of Table I.
(1) In case of (e1) \(\sim(e 9)\) and (e24) \(\sim(e 27)\) :

Table I
\begin{tabular}{|c|c|c|c|c|}
\hline & g & \(g_{0}\) & \(g_{1}\) & \(g_{2}\) \\
\hline (e1) & \(\mathrm{e}_{8(8)}\) & \(\mathrm{e}_{7(7)} \oplus \boldsymbol{R}\) & \(\mathfrak{B}_{\mathbb{C}^{\prime}}\) & \(\boldsymbol{R}\) \\
\hline (e2) & \(\mathrm{e}_{8(-24)}\) & \(\mathrm{e}_{7(-25)} \oplus \boldsymbol{R}\) & \(\mathfrak{B}_{\mathbb{C}}\) & \(\boldsymbol{R}\) \\
\hline (e3) & \(\mathrm{f}_{4(4)}\) & \(\mathfrak{B p}(3, \boldsymbol{R}) \oplus \boldsymbol{R}\) & \(\mathfrak{B}_{\boldsymbol{R}}\) & \(\boldsymbol{R}\) \\
\hline (e4) & \(\mathrm{e}_{6(6)}\) & \(\mathfrak{g l}(6, \boldsymbol{R}) \oplus \boldsymbol{R}\) & \(\mathfrak{F}_{\boldsymbol{C}}{ }^{\prime}\) & \(\boldsymbol{R}\) \\
\hline (e5) & \(\mathrm{e}_{6(2)}\) & \(8 \mathfrak{z}(3,3) \oplus \boldsymbol{R}\) & \(\mathfrak{P}_{\boldsymbol{C}}\) & \(\boldsymbol{R}\) \\
\hline (e6) & \(\mathrm{e}_{7(7)}\) & \(8 \mathrm{o}(6,6) \oplus \boldsymbol{R}\) & \(\mathfrak{P}_{\boldsymbol{H}^{\prime}}\) & \(\boldsymbol{R}\) \\
\hline (e7) & \(\mathrm{e}_{7(-5)}\) & \(80^{*}(12) \oplus \boldsymbol{R}\) & \(\mathfrak{B}_{\boldsymbol{H}}\) & \(\boldsymbol{R}\) \\
\hline (e8) & \(\mathrm{e}_{6(-14)}\) & \(\mathfrak{z u}(1,5) \oplus \boldsymbol{R}\) & \(\left(\mathfrak{P}_{\boldsymbol{C}}^{\boldsymbol{C}}\right)_{+r}\) & \(\boldsymbol{i R}\) \\
\hline (e9) & \(\mathrm{e}_{7(-25)}\) & \(\mathfrak{z o}(2,10) \oplus \boldsymbol{R}\) & \(\left(\mathfrak{P}_{\boldsymbol{H}}^{\boldsymbol{C}}\right)_{+r}\) & \(\boldsymbol{i R}\) \\
\hline (e10) & \(\mathrm{g}_{2(2)}\) & \(\mathfrak{g l}(2, \boldsymbol{R}) \oplus \boldsymbol{R}\) & \(\boldsymbol{R}_{3}\left[e_{1}, e_{2}\right]\) & \(\boldsymbol{R}\) \\
\hline (e11) & \(\mathrm{e}_{6(6)}\) & \(\underline{80}(4,4) \oplus \boldsymbol{R} \oplus \boldsymbol{R}\) & \(\mathfrak{C}^{\prime} \oplus \mathfrak{C}^{\prime}\) & \({ }^{\prime}\) \\
\hline (e12) & \(\mathrm{e}_{6(-26)}\) & \(\mathfrak{8 0}(8) \oplus \boldsymbol{R} \oplus \boldsymbol{R}\) & \(\mathfrak{C} \oplus \mathfrak{C}^{\text {c }}\) & \({ }^{\circ}\) \\
\hline (e13) & \(\mathrm{e}_{6(2)}\) & \(\mathcal{8 0}(3,5) \oplus \boldsymbol{R} \oplus \boldsymbol{i} \boldsymbol{R}\) & \(\mathfrak{C}^{\prime} \oplus i \mathbb{C}^{\prime}\) & \(\mathfrak{C}_{0}^{\prime}\) \\
\hline (e14) & \(\mathrm{e}_{6(-14)}\) & \(\mathfrak{z o}(1,7) \oplus \boldsymbol{R} \oplus \boldsymbol{i} \boldsymbol{R}\) & \(\mathfrak{c} \oplus \mathrm{i}\) & \(\mathfrak{c}_{00}\) \\
\hline (e15) & \(\mathrm{f}_{4(4)}\) & \(8 \mathrm{Bo}(3,4) \oplus \boldsymbol{R}\) & \(6^{\prime}\) & \(\mathfrak{W}_{0}^{\prime}\) \\
\hline (e16) & \(\mathrm{f}_{4(-20)}\) & \(8 \mathrm{go}(7) \oplus \boldsymbol{R}\) & \({ }^{¢}\) & \(\mathfrak{E}_{0}\) \\
\hline (e17) & \(\mathrm{e}_{6(6)}\) & \(\mathrm{zl}(5, \boldsymbol{R}) \oplus \mathrm{zl}(2, \boldsymbol{R}) \oplus \boldsymbol{R}\) & \(\boldsymbol{R}^{2} \oplus\left(\boldsymbol{R}^{5}\right)_{2}\) & \(\left(\boldsymbol{R}^{5}\right)_{4}\) \\
\hline (e18) & \(\mathrm{e}_{7(7)}\) & \(\boldsymbol{\operatorname { l l }}(7, \boldsymbol{R}) \oplus \boldsymbol{R}\) & \(\left(\boldsymbol{R}^{7}\right)_{3}\) & \(\left(\boldsymbol{R}^{7}\right)_{6}\) \\
\hline (e19) & \(\mathrm{e}_{7(7)}\) & \(\mathfrak{z o}(5,5) \oplus \mathfrak{z l}(2, \boldsymbol{R}) \oplus \boldsymbol{R}\) & \(\boldsymbol{R}^{2} \oplus \wedge^{+}\left(U_{(5)}\right)\) & \(W_{(5)}\) \\
\hline (e20) & \(\mathrm{e}_{7(-25)}\) & \(\mathfrak{z o}(1,9) \oplus \mathcal{z l}(2, \boldsymbol{R}) \oplus \boldsymbol{R}\) & \(\boldsymbol{R}^{2} \oplus\left(\wedge^{+}\left(U_{(5)}\right)^{c}\right)_{l_{1,9}}\) & \(\left(W_{(5)}^{\mathrm{c}}\right)_{l_{1,9}}\) \\
\hline (e21) & \(\mathrm{e}_{7(-5)}\) & \(\mathfrak{z o}(3,7) \oplus \mathfrak{z u}(2) \oplus \boldsymbol{R}\) & \(\left(\boldsymbol{R}^{2} \oplus \wedge^{+}\left(U_{(5)}\right)^{c}\right)_{+l_{3,7}}\) & \(\left(W_{(5)}^{\mathrm{c}}\right)_{l_{3,7}}\) \\
\hline (e22) & \(\mathrm{e}_{8(8)}\) & \(8 \mathrm{O}(7,7) \oplus \boldsymbol{R}\) & \(\wedge^{+}\left(U_{(7)}\right)\) & \(W_{(7)}\) \\
\hline (e23) & \(\mathrm{e}_{8(-24)}\) & \(\mathrm{Bn}^{\mathrm{o}}(3,11) \oplus \boldsymbol{R}\) & \(\left(\wedge^{+}\left(U_{(7)}\right)^{c}\right)_{l_{3,11}}\) & \(\left(W_{(7)}^{\mathrm{c}}\right)_{3_{3,11}}\) \\
\hline (e24) & \(\mathrm{e}_{8}^{C}\) & \(\mathrm{e}_{7}^{c} \oplus C\) & \(\mathfrak{B}_{\text {c }}^{\text {c }}\) & C \\
\hline (e25) & \(\mathrm{f}_{4}^{\text {c }}\) & \(\mathfrak{p p}(3, C) \oplus C\) & \(\mathfrak{F}_{\boldsymbol{R}}^{\boldsymbol{C}}\) & C \\
\hline (e26) & \(\mathrm{e}_{6}^{c}\) & \(\underset{\sim l}{ }(6, C) \oplus C\) & \(\mathfrak{B}_{\boldsymbol{C}}^{\text {c }}\) & C \\
\hline (e27) & \(\mathrm{e}_{7}^{\text {c }}\) & \(8 \mathrm{Bo}(12, C) \oplus C\) & \(\mathfrak{P}_{\boldsymbol{H}}^{C}\) & C \\
\hline (e28) & \(\mathrm{g}_{2}^{c}\) & \(\mathfrak{z l}(2, C) \oplus C\) & \(C_{3}\left[e_{1}, e_{2}\right]\) & C \\
\hline (e29) & \(\mathrm{e}_{6}^{\text {c }}\) & \(\mathcal{8 0}(8, C) \oplus C \oplus C\) & \(\mathfrak{C}^{C} \oplus \mathfrak{C}^{\text {c }}\) & \(\mathfrak{C}^{C}\) \\
\hline (e30) & \(\mathrm{f}_{4}^{\text {c }}\) & \(8 \mathrm{Bo}(7, C) \oplus C\) & \(\mathfrak{c}^{\text {c }}\) & \(\mathfrak{C}_{0}^{C}\) \\
\hline (e31) & \(\mathrm{e}_{6}^{c}\) & \(\mathfrak{B l}(5, C) \oplus \mathfrak{8 l}(2, C) \oplus C\) & \(\left(\boldsymbol{R}^{2} \otimes\left(\boldsymbol{R}^{5}\right)_{2}\right)^{c}\) & \(\left(\boldsymbol{R}^{5}\right)_{4}^{C}\) \\
\hline (e32) & \(\mathrm{e}_{7}^{c}\) & \(\mathfrak{z l}(7, C) \oplus C\) & \(\left(\boldsymbol{R}^{7}\right)_{3}^{c}\) & \(\left(\boldsymbol{R}^{7}\right)_{6}^{\text {c }}\) \\
\hline (e33) & \(\mathrm{e}_{7}^{c}\) & \(\mathcal{8 0}(10, C) \oplus \mathcal{8 l}(2, C) \oplus C\) & \(\left(\boldsymbol{R}^{2} \otimes \wedge^{+}\left(U_{(5)}\right)\right)^{c}\) & \(W_{(5)}^{C}\) \\
\hline (e34) & \(\mathrm{e}_{8}^{\text {c }}\) & \(\mathfrak{B o}(14, C) \oplus C\) & \(\wedge^{+}\left(U_{(7)}\right)^{c}\) & \(W_{(7)}^{c}\) \\
\hline
\end{tabular}

Let
\(\mathfrak{J}_{F}=\left\{X \in M(3, F) \mid X^{*}=X\right\}\)
\[
\left(F=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{C}^{\prime}, \boldsymbol{H}, \boldsymbol{H}^{\prime}, \mathfrak{C}, \mathfrak{C}^{\prime}\right)
\]
be a real Jordan algebra and Der \(\mathfrak{F}_{F}\) the derivation algebra of \(\mathfrak{J}_{F}\). For any \(X \in \mathfrak{Y}_{F}\), an endomorphism \(\tilde{X}\) of \(\mathfrak{J}_{F}\) is defined by
\[
\tilde{X}(Y)=\frac{1}{2}(X Y+Y X) \quad\left(Y \in \mathfrak{F}_{F}\right)
\]

Put
\(\mathfrak{I}_{F 0}=\left\{X \in \mathfrak{F}_{F} \mid \operatorname{tr} X=0\right\}\),
\(\tilde{\mathfrak{J}}_{F 0}=\left\{\tilde{X} \mid X \in \mathfrak{J}_{F 0}\right\}\),
\(\mathrm{e}_{6 F}=\operatorname{Der} \mathfrak{J}_{F} \oplus \tilde{\mathfrak{J}}_{F 0}, \mathrm{e}_{7 F}=\mathrm{e}_{6 F} \bigoplus \mathfrak{J}_{F} \bigoplus \mathfrak{J}_{F} \oplus \boldsymbol{R}\),
\(\mathfrak{B}_{F}=\mathfrak{J}_{F} \oplus \mathfrak{J}_{F} \oplus \boldsymbol{R} \oplus \boldsymbol{R}\),
\(\mathrm{e}_{8 F}=\mathrm{e}_{6 F} \bigoplus \mathfrak{B}_{F} \bigoplus \mathfrak{B}_{F} \oplus \boldsymbol{R} \oplus \boldsymbol{R} \oplus \boldsymbol{R}\).
Then, it is well known that \(\mathrm{e}_{8 F}\) is a real 2-GLA ([4]).

2-GLA's (e1) \(\sim(\mathrm{e} 7)\) are obtained as \(\mathrm{e}_{8 F}(F=\) \(\left.\mathfrak{C}^{\prime}, \mathfrak{C}, \boldsymbol{R}, \boldsymbol{C}^{\prime}, \boldsymbol{C}, \boldsymbol{H}^{\prime}, \boldsymbol{H}\right) .2-\mathrm{GLA}\) 's (e24) ~ (e27) are obtained by complexification of (e1), (e3), (e4) and (e6), respectively. The \(2-G L A\) (e8) (reap. (e9)) is obtained by the method described in \(\mathbf{1 . 2}\) from a grade-preserving involution of (e26) (resp. (e27)).

Hereafter, we outline only representations \(\rho_{k}\) of \(g_{0}\) in Table I.
(2) In case of (e10) and (e28):

Let \(\boldsymbol{R}_{3}\left[e_{1}, e_{2}\right]\) be a real vector space of all homogeneous polynomials of degree 3 in variables \(e_{1}\) and \(e_{2}\). Define a representation \(\rho\) of \(\mathfrak{g l}(2\),
\(\boldsymbol{R})\) on \(\boldsymbol{R}_{3}\left[e_{1}, e_{2}\right]\) by
\(\rho(X)\left(e_{i} e_{j} e_{k}\right)=\left(X e_{i}\right) e_{j} e_{k}+e_{i}\left(X e_{j}\right) e_{k}+e_{i} e_{j}\left(X e_{k}\right)\). In (e10), the representation \(\rho_{k}(k=1,2)\) of \(g_{0}\) on \(g_{k}\) is as follows:
\[
\rho_{1}(X, r) \boldsymbol{u}=\rho(X) \boldsymbol{u}+r \boldsymbol{u}, \rho_{2}(X, r) s=2 r
\]

The 2-GLA (e28) is obtained by complexification of (e10).
(3) In case of (e11) \(\sim(\mathrm{e} 16)\), (e29) and (e30):

In (e29), using automorphisms of \(\mathfrak{B o}(8, C) \pi\) and \(\lambda\) which were defined in [2], we define the representation \(\rho_{k}(k=1,2)\) of \(g_{0}\) on \(g_{k}\) as follows:
\(\rho_{1}(X, s, t)(x \oplus y)=(\pi X+s) x \oplus(\lambda \pi X+t) y\),
\[
\rho_{2}(X, s, t) u=(X+s+t) u
\]

For \(F=\mathbb{C}^{\prime}\) or \(\mathfrak{C}\) put
\(F_{0}=\{x \in F \mid \operatorname{Re} x=0\}\),
\(F_{00}=\left\{\boldsymbol{i} a+x \in F^{C} \mid a \in \boldsymbol{R}, x \in F_{0}\right\}\),
where \(\operatorname{Re} x\) means the real part of \(x\).
2-GLA's (e11)~(e16) and (e30) are obtained by the method described in 1.2 from (e29).
(4) In case of (e17), (e18), (e31) and (e32):

Let \(\left(\boldsymbol{R}^{n}\right)_{k}:=\wedge^{k}\left(\boldsymbol{R}^{n}\right)\) be the \(k\)-th exterior power of \(\boldsymbol{R}^{n}\). Define a representation \(\mu_{k}\) of \(\mathfrak{B l}(n, \boldsymbol{R})\) on \(\left(\boldsymbol{R}^{n}\right)_{k}\) by
\[
\begin{aligned}
\mu_{k}(X) & \left(x_{1} \wedge \cdots \wedge x_{k}\right) \\
& =\sum_{j=1}^{k} x_{1} \wedge \cdots \wedge\left(X \boldsymbol{x}_{j}\right) \wedge \cdots \wedge \boldsymbol{x}_{k}
\end{aligned}
\]

The representation \(\rho_{k}(k=1,2)\) of \(g_{0}\) on \(g_{k}\) is as follows:
(a) In case of (e17).
\(\rho_{1}(X, A, r)(a \otimes \boldsymbol{u})\)
\(=(A a) \otimes \boldsymbol{u}+a \otimes\left(\mu_{2}\left(-{ }^{t} X\right) \boldsymbol{u}\right)+r(a \otimes \boldsymbol{u})\), \(\rho_{2}(X, A, r) x=(X+2 r) x\).
(b) In case of (e18).
\[
\begin{aligned}
& \rho_{1}(X, r) \boldsymbol{u}=\mu_{3}\left(-{ }^{t} X\right) \boldsymbol{u}+r \boldsymbol{u} \\
& \rho_{2}(X, r) \boldsymbol{x}=(X+2 r) \boldsymbol{x}
\end{aligned}
\]

The 2-GLA (e31) (resp. (e32)) is obtained by complexification of (e17) (resp. (e18)).
(5) In case of (e19) \(\sim(\mathrm{e} 23)\), (e33) and (e34):

Let \(W_{(n)}\) be the \(2 n\)-dimensional real vector space with a basis \(\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}\). We define a bilinear from \(Q\) on \(W_{(n)}\) by
\[
\begin{aligned}
& Q\left(e_{i}, e_{j}\right)=0, Q\left(f_{i}, f_{j}\right)=0 \\
& Q\left(e_{i}, f_{j}\right)=Q\left(f_{i}, e_{j}\right)=\delta_{i j}
\end{aligned}
\]

Let \(U_{(n)}\) be the subspace of \(W_{(n)}\) generated by \(\left\{e_{1}, \ldots, e_{n}\right\}\) and put
\[
\wedge^{+} U_{(n)}=\sum_{l: \mathrm{even}} \wedge^{l} U_{(n)}
\]

Let \(d \varphi\) be a half-spin representation of \(\mathbb{Z O}(n, n)\) on \(\wedge^{+} U_{(n)}\). The representation \(\rho_{k}(k=1,2)\) of \(g_{0}\) on \(g_{k}\) is as follows:
(a) In case of (e19).
\(\rho_{1}(X, A, r)(a \otimes \boldsymbol{u})\)
\(=(A a) \otimes \boldsymbol{u}+a \otimes(d \varphi(X) \boldsymbol{u})+r(a \otimes \boldsymbol{u})\),
\[
\rho_{2}(X, A, r) x=(X+2 r) x
\]
(b) In case of (e22).
\[
\begin{aligned}
& \rho_{1}(X, \boldsymbol{r}) \boldsymbol{u}=d \varphi(X) \boldsymbol{u}+\boldsymbol{r} \boldsymbol{u} \\
& \rho_{2}(X, r) \boldsymbol{x}=(X+2 \boldsymbol{r}) \boldsymbol{x} .
\end{aligned}
\]

The 2-GLA (e33) (resp. (e34)) is obtained by complexification of (e19) (resp. (e22)). 2-GLA's (e20) and (e21) are obtained by the method described in 1.2 from (e33). The 2-GLA (e23) is obtained by the method described in \(\mathbf{1 . 2}\) from (e34).

Remark. 2-GLA's (e17) and (e31) can not be obtained by Allison's construction.

\section*{References}
[1] B. N. Allison: Models of isotropic simple Lie algebras. Comm. Algebra, 7, 1835-1875 (1979).
[2] H. Freudenthal: Oktaven, Ausnahmegruppen und

Oktavengeometrie. Math. Inst. Rijkuniv. te Utrecht (1951).
[3] S. Gomyo: Realizations of exceptional simple graded Lie algebras of the second kind (preprint).
[4] T. Imai and I. Yokota: Simply connected compact simple Lie group \(G=E_{8(-248)}\) of type \(E_{8}\). J. Math. Kyoto Univ., 21, 741-762 (1981).
[5] S. Kaneyuki: On the subalgebra \(g_{0}\) and \(g_{e v}\) of semisimple graded Lie algebras. J. Math. Soc. Japan, 45, 1-19 (1993).
[6] O. N. Smirnov: Simple and semisimple structurable algebras. Algebra and Logic, 29, 377-394 (1990).```

