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The main purpose of this paper is to generalize the Kazhdan-Lusztig
multiplicity formula, proved by Kashiwara and Tanisaki [5], [6] or by Casian
[2] for symmetrizable Kac-Moody algebras, to the case of symmetrizable
generalized Kac-Moody algebras under a certain restriction (Theorem 4.3).
Here a generalized Kac-Moody algebra (GKM algebra for short) is a complex
contragredient Lie algebra g(A) associated to a real square matrix (called a

GGCM) A (a),i indexed by a finite set I {1, 2,..., n} satisfying: (1)
either a.=2 or a.<_0 for i I;(2) a--<0 if i:/:j, and a.Z forj i
if a 2;(3) a. 0 implies a 0. This definition of GKM algebras is
due to Kac [3, Ch. 11], and is somewhat different from the one by Borcherds

1. GKM algebras. For a symmetrizable GGCM A (a),, there
exists a triple (, H Hv), called a realization of A, where is a vector
space over C of dimension 2n- rank A, H {a} c * "= Homc(, C)
and Hv {a[}z c are both linearly independent indexed subsets satis-
fying , ) a for i, j I. Here (’, ") denotes a duality pairing. The
GKM algebra fl(A) associated to A is the Lie algebra over C generated by
the above vector space and the elements e, (i with the fundamental
relations:

[h, h’] 0 forh, h’,
(F1) [h, e] (a,)e, [h,] (a, h) forh , i I,

[e. ] 8.a for i. j I.
(F2) (ad el) -a,,e 0, (ad) 0 ifa 2 andj i,
(F3) [ei, e] 0, [,] 0 ifa, a N 0 and ai O.

Then we have the root space decomposition of g(A) with respect to the Cartan
subalgebra " g(A) @+g@a_, where B+ Q+ ,Zo
is the set of positive roots, B_ B+ is the set of negative roots, and g is
the "root space corresponding to a root B B+ U B_ c *. Note that

Ce, g_, C for i I.
.We put I re "= {i I a 2). Im "= {i I la 0). and Hre

{ai H Ire) the set of real simple roots, Hm’= { HI i Im} the
set of imaginary simple roots. For a, a Hm, we say that is perpendicu-
lar to if a 0. (Remark that an imaginary simple root a Him

is per-
pendicular to itself if a 0.) For * and Hm we say that a is

V
perpendicular to if (, ) 0.

Now fix an element A P+’= { * (, a) 2 0 (i D, and (,
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Zo if a 2}. Then we define a subset aD(A) (resp. (A)) of )* to be
the set of all sums of distinct (resp. not necessarily distinct), pairwise per-
pendicular, imaginary simple roots perpendicular to A. For an element/9--
W,i., kai d:= d(0), we put ht(fl)

The Weyl group W of g(A) is the subgroup of GL(*) generated by the
simple reflections r (i Ie). For an element w W, g(w) denotes the
length of w. Put Ae := W" l’I re (the set of real roots), and Aim ".-- A \ A re

(the
set of imaginary roots). For a real root a w(ai) (w W, a H), we
define the reflection ra of * with respect to
(2 [3"), where cv "= w(c) [3 is the dual real root of c. Note that

-1ra wrw W.
From now on throughout this paper, we assume that the GGCM A

(a), is symmetrizable. So there exists a nondegenerate, symmetric, in-
variant bilinear form (" I’) on g(A). Note that the restriction of this bilinear
form to the Cartan subalgebra [3 is also nondegenerate, so that it induces on
[3* a nondegenerate, symmetric, W-invariant bilinear form, which is denoted
again by (’1").

2. Basie representation theory of GKM algebras. We extend the Bruhat
ordering on W to the one on W x M.

Definition 2.1 (Bruhat ordering). Let w, w. W. We write w --w2 if
there exists some 7" Are A+ such that w rrW and g(w) g(w2) + 1.
Moreover, for w, w’ W, we write w > w’ if w w’ or if there exist w,

w Wsuch that w--w1.---’’’ --wt--w’.
Definition 2.2. For ,mc, fl’-- mc M, we write

/> fl’ifm--> m for allk I m.
Definition 2.3. For (w, ), (w’, ’) W x M, we write (w,/3) > (w’, ’)

if w/> w’ and/5/> ’.
2.1. The category is the category of all g (A) -modules V admitting a

weight space decomposition V r* Vr with finite-dimensional weight
spaces Vr such that the set of all weights of V is contained in a finite union of
sets of the form D(2)"= 2- Q+ (2 [3"). Obviously, highest weight
g (A) -modules, such as the Verma module V(2) with highest weight 2 and its
irreducible quotient L() for 2 )*, are in the category

For a module V in the category , we define the formal character ch V of
V by ch V "= ._,t* (dimcV,)e(v), as an element of the algebra $ with
basis e(z-) (- [3), called formal exponentials, introduced in [3, Ch. 9]. Then
there exists a unique set {a.},. of nonnegative integers such that ch V
Y.. a. ch L(/z) (equality in the algebra 8).

Definition 2.4. The above integer aa is called the multiplicity of L(/2) in
V, and is denoted by [V L(/z)].

Note that for a module V and /z [3", [V L(/2)] 4:0 if and only
if L(/2) is an irreducible subquotient of V.

2.2. Here we give two module-theoretical results on GKM algebras for
the case of M(A), which are essentially established in [7] and [8] for the case
of (A).
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We choose and fix an element p )* such that (p, cry) (1/2)’aii
for all i I, and we shall use the notation (w, )oA’= w(A + p- fl) p
for (w,) Wx andA P+.

Theorem 2.5. Let A P+, (w, ) W (A). Then any irreducible

subquotient of the Verma module V((w, t) A) is isomorphic to L((w’, ’)o A)
for some (w’, t9’) W x sg (A) with (w’, fl’) > (w, fl). Conversely, for any
(w’, ’) W sg (A) wit (w’, [’) > (w, [), L((w’, [’)oA) is isomorphic to
an irreducible subquotient of V((w, fl)A).

Theorem 2.6. Let A P+, (w, fl), (w, fl) W M(A). Then
V( (w, ) oA) V( (w, ) oA)
(w,/) > (w,

:> [V((w, fl,)oA) "L((w, fl)oA)] =/= O.
3. Two kinds of character sum formulas.
3.1. Character sum formula for a Verma module and its application.

The following theorem is proved in [4] in the more general setting of symme-
trizable contragredient Lie algebras.

Theorem A (see [4]). Let g(A) be a symmetrizable GKM algebra, and
V(,) the Verma module with highest weight [?*. Then the module V(2) has
a g(A)-module filtration V(,) V(,) V(/)z such that V(/)/V(/)

" L(/) as a (A)-module, and the following equality holds in the algebra 8"
E ch V(2)i E E ch V(, lfl),

where the roots A+ are taken with their multiplicities.
We, quote the next lemma from our previous work.
Lemma B (cf. [8, Lemma 4.4]). Assume that the GGCM A (a),

satisfies the condition that a :/: 0 (i I). Let 12 P+, w W, and )’ A+.
Then the following are equivalent"

(1) 2(w(tt + P) IT) re(TIT) for some m Z,
r -1

(2) we have either (a) r A and (rrW) > g(w), or (b) w (7") //

and (w- (T) [2) O.
v).Moreover, in case (a), we have rrW >/ w and rn (w([2 - p), T In case (b),

we haveto 1.
Then we can show the following theorem, by applying Theorem A

together with Theorem 2.6 and Lemma B.
Theorem 3.1. Let g(A) be a GKM algebra associated to a symmetrizable

GGCM A (ai) .i satisfying the condition that a 4:0 (i I). Let A
P+, w W, and fl, fl" sd (A). If fl’ > fl and ht(fl’) ht(fl) + 1, then we

have [V((w, )A) "L((w, fl’)A)] 1.
3.2. Character sum formula for a quotient of two Verma modules. In

this subsection, we assume that the GGCM A (a)i, satisfies the condi-
tion that a 4:0 (i I).

Let c w(c) A+ with w W, c //, and let / [3" be such
that 2(/ -t- plot) (c c). Then, arguing as in [9], we obtain an embedding:
V(2 0) c_ V(2), and furthermore, we can prove

Theorem 3.2. Let g(A) be a GKM algebra associated to a symmetrizable
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GGCM A (aij)i,z satisfying the condition that ai =/: 0 (i I). Then, with

the above notation, the quotient module N(2) V(,)/V(2 o) has a g(A)-
module filtration N(,) N(,)I N(,)2 such that N(,) /N(,)I
L() as a g(A)-module, and the following equality holds in the algebra 8
Z chN(2)= Z chV(2--1fl)-

N N ch V( a-- mr) c(,) ch V(,
rA+ m

2(2-a+O It) --m (rl r)

where c() Z, the roots fl A+ and )" A+ are taken with, their multiplici-
ties.

Let A P+, w W, and c // with (AIc) 0. We put ’=
w(A + p) p, and c w(a) W’Him A+, then 2( + p a)
(c[ o). From Theorem 3.1, we know that [V() L(- c)]- 1. On the
other hand, we can compute this multiplicity again, this time using Theorem
3.2, to get the following corollary.

Corollary 3.3. Let w(A + p) p be as above. Then the constant
c() in Theorem 3.2 is equal to 1.

4. Kazhdan-Lusztig type multiplicity formula.
4.1. A reduction to the case of Kae-Moody algebras.
Theorem 4.1. Let g(A) be a GKM algebra associated to a symmetrizable

GGCM A (a),z. Let A P+, and (w, fl), (z, fl’) W x sd (A). Then
we have

[V((w, fl)oA) L((z, fl’)A)] -> Pw,z(1)’Pa,a,,
where Pw,z(q) is the Kazhdan-Lusztig polynomial in q for W, and Pa,a, 1 if
fl’ >/fl, and 0 otherwise. Moreover, the equality holds if

Sketch of proof. The Kazhdan-Lusztig multiplicity formula for symme-
trizable Kac-Moody algebras states that if a- 2 for all i I (in this case
sd(A) {0}), then the equality holds for any w, z W in the theorem. We
can apply this celebrated result to the Kac-Moody algebra fl(Az**) associated
to the submatrix Aw "-(a),zr,, a generalized Caftan matrix, of the
GGCM A (ai)i,z. Here the Kac-Moody algebra fl(Az,,) is embedded into

fl(A) as a canonical subalgebra with Weyl group W. Therefore, the theorem
can be proved by the same argument as the one for [10, Theorem 3.4].

4.2. Main result. In this subsection, we assume that the GGCM A-
(a)i,jz satisfies the condition that ai 4= 0 (i i). Note that, in this case,
the set M (A) coincides with the set s (A) for A P+.

By double induction on g(z) g(w) and ht(fl’) ht(/), using Theorem
4.1 as the starting point of the induction, and Theorem 3.2 together with

Corollary 3.3 for the induction step, we can prove our main theorem.
Theorem 4.2. Let fl(A) be a GKM algebra associated to a symmetrizable

GGCM A (ai), satisfying the condition that ai 4= 0 (i I). Let A P+,
and (w, fl), (z, fl’) W sd (A). Then we have

[Y((w, fl)oA) L((z, fl’)oA)] P,z(1)’Pz,,,
where Pz,z, is as in Theorem 4.1.
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From Theorem 4.2 together with Theorem 2.5, we have the following
Theorem 4.3. Let o(A) be a GKM algebra associated to a symmetrizable

GGCM A= (a),z with ai:/= O (i i). Let A P+. Then, for (w,/3)
W (A), we have, in the algebra $,

ch Y((w, fl)oA) Pw,z(1) .P,,.ch L((z, fl’)oA).
(z,B’)WxM(A)

Equivalently, for (w, 13) W M (A), we have, in the algebra 8,
ch L((w, fl) oA)., (-- 1)(g(z)+ht("))-(e(w)+ht(Z))Qw,z(1)’P,,,,’ch V((z, fl’)A).

(z,B’) WM(A)

Here Qw,(q) (z W) are the inverse Kazhdan-Lusztig polynomials in q for W
(see [6]).

Remark. In view of the Weyl-Kac-Borcherds character formula for
L(A) with A P+ (see [1], [3, Ch. 11]), the restriction on the GGCM A
(ai)i, in Theorems 4.2 and 4.3, that aii :/: 0 (i /), seems to be essential.
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