22. Kazhdan-Lusztig-Type Multiplicity Formula for Symmetrizable Generalized Kac-Moody Algebras

By Satoshi Naito
Department of Mathematics, Shizuoka University
(Communicated by Kiyosi ITÔ, M. J. A., April 12, 1994)

The main purpose of this paper is to generalize the Kazhdan-Lusztig multiplicity formula, proved by Kashiwara and Tanisaki [5], [6] or by Casian [2] for symmetrizable Kac-Moody algebras, to the case of symmetrizable generalized Kac-Moody algebras under a certain restriction (Theorem 4.3). Here a generalized Kac-Moody algebra (GKM algebra for short) is a complex contragredient Lie algebra $\mathfrak{g}(A)$ associated to a real square matrix (called a GGCM) $A=\left(a_{i j}\right)_{i, j \in I}$ indexed by a finite set $I=\{1,2, \ldots, n\}$ satisfying: (1) either $a_{i i}=2$ or $a_{i i} \leq 0$ for $i \in I$; (2) $a_{i j} \leq 0$ if $i \neq j$, and $a_{i j} \in \mathbf{Z}$ for $j \neq i$ if $a_{i i}=2$; (3) $a_{i j}=0$ implies $a_{j i}=0$. This definition of GKM algebras is due to Kac [3, Ch. 11], and is somewhat different from the one by Borcherds [1].

1. GKM algebras. For a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$, there exists a triple ($\mathfrak{h}, \Pi, \Pi^{\vee}$), called a realization of A, where \mathfrak{h} is a vector space over \mathbf{C} of dimension $2 n-\operatorname{rank} A, \Pi=\left\{\alpha_{i}\right\}_{i \in I} \subset \mathfrak{h}^{*}:=\operatorname{Hom}_{\mathbf{C}}(\mathfrak{h}, \mathbf{C})$ and $\Pi^{\vee}=\left\{\alpha_{i}^{\vee}\right\}_{i \in I} \subset \mathfrak{h}$ are both linearly independent indexed subsets satisfying $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$ for $i, j \in I$. Here $\langle\cdot, \cdot\rangle$ denotes a duality pairing. The GKM algebra $\mathfrak{g}(A)$ associated to A is the Lie algebra over \mathbf{C} generated by the above vector space \mathfrak{G} and the elements $e_{i}, f_{i}(i \in I)$ with the fundamental relations:

$$
\text { (F1) } \begin{cases}{\left[h, h^{\prime}\right]=0} & \text { for } h, h^{\prime} \in \mathfrak{h}, \\ {\left[h, e_{i}\right]=\left\langle\alpha_{i}, h\right\rangle e_{i},\left[h, f_{i}\right]=-\left\langle\alpha_{i}, h\right\rangle f_{i}} & \text { for } h \in \mathfrak{h}, i \in I, \\ {\left[e_{i}, f_{j}\right]=\delta_{i j} \alpha_{i}^{\vee}} & \text { for } i, j \in I,\end{cases}
$$

(F2) $\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}} e_{j}=0,\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}} f_{j}=0 \quad$ if $a_{i i}=2$ and $j \neq i$,
(F3) $\left[e_{i}, e_{j}\right]=0,\left[f_{i}, f_{j}\right]=0$ if $a_{i i}, a_{j j} \leq 0$ and $a_{i j}=0$.
Then we have the root space decomposition of $\mathfrak{g}(A)$ with respect to the Cartan subalgebra $\mathfrak{h}: \mathfrak{g}(A)=\mathfrak{h} \oplus \sum_{\alpha \in \Delta_{+}}^{\oplus} \mathfrak{g}_{\alpha} \oplus \sum_{\alpha \in \Delta_{-}}^{\oplus} \mathfrak{g}_{\alpha}$, where $\Delta_{+} \subset Q_{+}:=\sum_{i \in I} \mathbf{Z}_{\geq 0} \alpha_{i}$ is the set of positive roots, $\Delta_{-}=-\Delta_{+}$is the set of negative roots, and g_{α} is the root space corresponding to a root $\alpha \in \Delta=\Delta_{+} \cup \Delta_{-} \subset \mathfrak{h}^{*}$. Note that $\mathfrak{g}_{\alpha_{i}}$ $=\mathbf{C} e_{i}, \mathrm{~g}_{-\alpha_{i}}=\mathbf{C} f_{i}$ for $i \in I$.

We put $I^{r e}:=\left\{i \in I \mid a_{i i}=2\right\}, I^{i m}:=\left\{i \in I \mid a_{i i} \leq 0\right\}$, and $\Pi^{r e}:=$ $\left\{\alpha_{i} \in \Pi \mid i \in I^{r e}\right\}$ the set of real simple roots, $\Pi^{i m}:=\left\{\alpha_{i} \in \Pi \mid i \in I^{i m}\right\}$ the set of imaginary simple roots. For $\alpha_{i}, \alpha_{j} \in \Pi^{i m}$, we say that α_{i} is perpendicular to α_{j} if $a_{i j}=0$. (Remark that an imaginary simple root $\alpha_{i} \in \Pi^{i m}$ is perpendicular to itself if $a_{i i}=0$.) For $\lambda \in \mathfrak{h}^{*}$ and $\alpha_{i} \in \Pi^{i m}$, we say that α_{i} is perpendicular to λ if $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=0$.

Now fix an element $\Lambda \in P_{+}:=\left\{\lambda \in \mathfrak{h}^{*} \mid\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 0(i \in I)\right.$, and $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle$
$\in \mathbf{Z}_{\geq 0}$ if $\left.a_{i i}=2\right\}$. Then we define a subset $\mathscr{S}(\Lambda)($ resp. $\mathscr{A}(\Lambda))$ of \mathfrak{h}^{*} to be the set of all sums of distinct (resp. not necessarily distinct), pairwise perpendicular, imaginary simple roots perpendicular to Λ. For an element $\beta=$ $\sum_{i \in I^{\prime m}} k_{i} \alpha_{i} \in \mathscr{A}:=\mathscr{A}(0)$, we putht $(\beta)=\sum_{i \in I^{\prime m}} k_{i}$.

The Weyl group W of $\mathfrak{g}(A)$ is the subgroup of $G L\left(\mathfrak{h}^{*}\right)$ generated by the simple reflections $r_{i}\left(i \in I^{r e}\right)$. For an element $w \in W, \ell(w)$ denotes the length of w. Put $\Delta^{r e}:=W \cdot \Pi^{r e}$ (the set of real roots), and $\Delta^{i m}:=\Delta \backslash \Delta^{r e}$ (the set of imaginary roots). For a real root $\alpha=w\left(\alpha_{i}\right)\left(w \in W, \alpha_{i} \in \Pi^{r e}\right)$, we define the reflection r_{α} of \mathfrak{h}^{*} with respect to α by: $r_{\alpha}(\lambda)=\lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha$ $\left(\lambda \in \mathfrak{h}^{*}\right)$, where $\alpha^{\vee}:=w\left(\alpha_{i}^{\vee}\right) \in \mathfrak{h}$ is the dual real root of α. Note that $r_{\alpha}=w r_{i} w^{-1} \in W$.

From now on throughout this paper, we assume that the GGCM $A=$ $\left(a_{i j}\right)_{i, j \in I}$ is symmetrizable. So there exists a nondegenerate, symmetric, invariant bilinear form $(\cdot \mid \cdot)$ on $\mathfrak{g}(A)$. Note that the restriction of this bilinear form to the Cartan subalgebra \mathfrak{h} is also nondegenerate, so that it induces on \mathfrak{h}^{*} a nondegenerate, symmetric, W-invariant bilinear form, which is denoted again by ($\cdot \mid \cdot$).
2. Basic representation theory of GKM algebras. We extend the Bruhat ordering on W to the one on $W \times \mathscr{A}$.

Definition 2.1 (Bruhat ordering). Let $w_{1}, w_{2} \in W$. We write $w_{1} \leftarrow w_{2}$ if there exists some $\gamma \in \Delta^{r e} \cap \Delta_{+}$such that $w_{1}=r_{\gamma} w_{2}$ and $\ell\left(w_{1}\right)=\ell\left(w_{2}\right)+1$. Moreover, for $w, w^{\prime} \in W$, we write $w \geqslant w^{\prime}$ if $w=w^{\prime}$ or if there exist w_{1}, $\ldots, w_{t} \in W$ such that $w \leftarrow w_{1} \leftarrow \cdots \leftarrow w_{t} \leftarrow w^{\prime}$.

Definition 2.2. For $\beta=\sum_{k \in I^{i m}} m_{k} \alpha_{k}, \beta^{\prime}=\sum_{k \in I^{I m}} m_{k}^{\prime} \alpha_{k} \in \mathscr{A}$, we write $\beta \geqslant \beta^{\prime}$ if $m_{k} \geq m_{k}^{\prime}$ for all $k \in I^{i m}$.

Definition 2.3. For $(w, \beta),\left(w^{\prime}, \beta^{\prime}\right) \in W \times \mathscr{A}$, we write $(w, \beta) \geqslant\left(w^{\prime}, \beta^{\prime}\right)$ if $w \geqslant w^{\prime}$ and $\beta \geqslant \beta^{\prime}$.
2.1. The category \mathscr{O} is the category of all $\mathfrak{g}(A)$-modules V admitting a weight space decomposition $V=\sum_{\tau \in \mathfrak{h} *}^{\oplus} V_{\tau}$ with finite-dimensional weight spaces V_{τ} such that the set of all weights of V is contained in a finite union of sets of the form $D(\lambda):=\lambda-Q_{+}\left(\lambda \in \mathfrak{h}^{*}\right)$. Obviously, highest weight $\mathfrak{g}(A)$-modules, such as the Verma module $V(\lambda)$ with highest weight λ and its irreducible quotient $L(\lambda)$ for $\lambda \in \mathfrak{h}^{*}$, are in the category \mathscr{O}.

For a module V in the category \mathfrak{O}, we define the formal character ch V of V by ch $V:=\sum_{\tau \in \mathfrak{G}^{*}}\left(\operatorname{dim}_{\mathbf{C}} V_{\tau}\right) e(\tau)$, as an element of the algebra \mathscr{E} with basis $e(\tau)\left(\tau \in \mathfrak{h}^{*}\right)$, called formal exponentials, introduced in [3, Ch. 9]. Then there exists a unique set $\left\{a_{\mu}\right\}_{\mu \in \mathfrak{b}^{*}}$ of nonnegative integers such that ch $V=$ $\sum_{\mu \in \mathfrak{h}^{*}} a_{\mu} \operatorname{ch} L(\mu)$ (equality in the algebra \mathscr{E}).

Definition 2.4. The above integer a_{μ} is called the multiplicity of $L(\mu)$ in V, and is denoted by [$V: L(\mu)]$.

Note that for a module $V \in \mathcal{O}$ and $\mu \in \mathfrak{h}^{*},[V: L(\mu)] \neq 0$ if and only if $L(\mu)$ is an irreducible subquotient of V.
2.2. Here we give two module-theoretical results on GKM algebras for the case of $\mathscr{A}(\Lambda)$, which are essentially established in [7] and [8] for the case of $\mathscr{S}(\Lambda)$.

We choose and fix an element $\rho \in \mathfrak{h}^{*}$ such that $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=(1 / 2) \cdot a_{i i}$ for all $i \in I$, and we shall use the notation $(w, \beta) \circ \Lambda:=w(\Lambda+\rho-\beta)-\rho$ for $(w, \beta) \in W \times \mathscr{A}$ and $\Lambda \in P_{+}$.

Theorem 2.5. Let $\Lambda \in P_{+},(w, \beta) \in W \times \mathscr{A}(\Lambda)$. Then any irreducible subquotient of the Verma module $V((w, \beta) \circ \Lambda)$ is isomorphic to $L\left(\left(w^{\prime}, \beta^{\prime}\right) \circ \Lambda\right)$ for some $\left(w^{\prime}, \beta^{\prime}\right) \in W \times \mathscr{A}(\Lambda)$ with $\left(w^{\prime}, \beta^{\prime}\right) \geqslant(w, \beta)$. Conversely, for any $\left(w^{\prime}, \beta^{\prime}\right) \in W \times \mathscr{A}(\Lambda)$ with $\left(w^{\prime}, \beta^{\prime}\right) \geqslant(w, \beta), L\left(\left(w^{\prime}, \beta^{\prime}\right) \circ \Lambda\right)$ is isomorphic to an irreducible subquotient of $V((w, \beta) \circ \Lambda)$.

Theorem 2.6. Let $\Lambda \in P_{+},\left(w_{1}, \beta_{1}\right),\left(w_{2}, \beta_{2}\right) \in W \times \mathscr{A}(\Lambda)$. Then $V\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right) \hookrightarrow V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right)$
$\Leftrightarrow \quad\left(w_{1}, \beta_{1}\right) \geqslant\left(w_{2}, \beta_{2}\right)$
$\Leftrightarrow \quad\left[V\left(\left(w_{2}, \beta_{2}\right) \circ \Lambda\right): L\left(\left(w_{1}, \beta_{1}\right) \circ \Lambda\right)\right] \neq 0$.

3. Two kinds of character sum formulas.

3.1. Character sum formula for a Verma module and its application. The following theorem is proved in [4] in the more general setting of symmetrizable contragredient Lie algebras.

Theorem A (see [4]). Let $\mathfrak{g}(A)$ be a symmetrizable GKM algebra, and $V(\lambda)$ the Verma module with highest weight $\lambda \in \mathfrak{h}^{*}$. Then the module $V(\lambda)$ has $a \mathfrak{g}(A)$-module filtration $V(\lambda) \supset V(\lambda)_{1} \supset V(\lambda)_{2} \supset \cdots$ such that $V(\lambda) / V(\lambda)_{1}$ $\cong L(\lambda)$ as a $g(A)$-module, and the following equality holds in the algebra \mathscr{E} :

$$
\sum_{i \geq 1} \operatorname{ch} V(\lambda)_{i}=\sum_{\beta \in \Delta_{+}} \sum_{\substack{l \geq 1 \\ 2(\lambda+\rho \mid \beta)=l(\beta \mid \beta)}} \operatorname{ch} V(\lambda-l \beta),
$$

where the roots $\beta \in \Delta_{+}$are taken with their multiplicities.
We quote the next lemma from our previous work.
Lemma B (cf. [8, Lemma 4.4]). Assume that the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfies the condition that $a_{i i} \neq 0(i \in I)$. Let $\mu \in P_{+}, w \in W$, and $\gamma \in \Delta_{+}$. Then the following are equivalent:
(1) $2(w(\mu+\rho) \mid \gamma)=m(\gamma \mid \gamma)$ for some $m \in \mathbf{Z}_{\geq 1}$,
(2) we have either (a) $\gamma \in \Delta^{r e}$ and $\ell\left(r_{\gamma} w\right)>\ell(w)$, or (b) $w^{-1}(\gamma) \in \Pi^{i m}$ and $\left(w^{-1}(\gamma) \mid \mu\right)=0$.
Moreover, in case (a), we have $r_{r} w \geqslant w$ and $m=\left\langle w(\mu+\rho), \gamma^{\vee}\right\rangle$. In case (b), we have $m=1$.

Then we can show the following theorem, by applying Theorem A together with Theorem 2.6 and Lemma B.

Theorem 3.1. Let $\mathfrak{g}(A)$ be a GKM algebra associated to a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfying the condition that $a_{i i} \neq 0(i \in I)$. Let $\Lambda \in$ $P_{+}, w \in W$, and $\beta, \beta^{\prime} \in \mathscr{A}(\Lambda)$. If $\beta^{\prime} \geqslant \beta$ and $\operatorname{ht}\left(\beta^{\prime}\right)=\operatorname{ht}(\beta)+1$, then we have $\left[V((w, \beta) \circ \Lambda): L\left(\left(w, \beta^{\prime}\right) \circ \Lambda\right)\right]=1$.
3.2. Character sum formula for a quotient of two Verma modules. In this subsection, we assume that the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfies the condition that $a_{i i} \neq 0(i \in I)$.

Let $\alpha=w\left(\alpha_{j}\right) \in \Delta_{+}$with $w \in W, \alpha_{j} \in \Pi^{i m}$, and let $\lambda \in \mathfrak{h}^{*}$ be such that $2(\lambda+\rho \mid \alpha)=(\alpha \mid \alpha)$. Then, arguing as in [9], we obtain an embedding: $V(\lambda-\alpha) \hookrightarrow V(\lambda)$, and furthermore, we can prove

Theorem 3.2. Let $\mathfrak{g}(A)$ be a GKM algebra associated to a symmetrizable

GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfying the condition that $a_{i i} \neq 0(i \in I)$. Then, with the above notation, the quotient module $N(\lambda):=V(\lambda) / V(\lambda-\alpha)$ has a $g(A)-$ module filtration $N(\lambda) \supset N(\lambda)_{1} \supset N(\lambda)_{2} \supset \cdots$ such that $N(\lambda) / N(\lambda)_{1} \cong$ $L(\lambda)$ as a $\mathfrak{g}(A)$-module, and the following equality holds in the algebra \mathscr{E} :

$$
\begin{aligned}
\sum_{i \geq 1} \operatorname{ch} N(\lambda)_{i} & =\sum_{\beta \in \Delta_{+}} \sum_{\substack{l \geq 1 \\
2(\lambda+\rho \mid \beta)=l(\beta \mid \beta)}} \operatorname{ch} V(\lambda-l \beta)- \\
& -\sum_{r \in \Delta_{+}} \sum_{\substack{m \geq 1 \\
2(\lambda-\alpha+\rho \mid r)=m(\gamma \mid r)}} \operatorname{ch} V(\lambda-\alpha-m \gamma)-c(\lambda) \operatorname{ch} V(\lambda-\alpha),
\end{aligned}
$$

where $c(\lambda) \in \mathbf{Z}$, the roots $\beta \in \Delta_{+}$and $\gamma \in \Delta_{+}$are taken with their multiplicities.

Let $\Lambda \in P_{+}, w \in W$, and $\alpha_{j} \in \Pi^{i m}$ with $\left(\Lambda \mid \alpha_{j}\right)=0$. We put $\lambda:=$ $w(\Lambda+\rho)-\rho, \quad$ and $\quad \alpha:=w\left(\alpha_{j}\right) \in W \cdot \Pi^{i m} \subset \Delta_{+}$, then $2(\lambda+\rho \mid \alpha)=$ $(\alpha \mid \alpha)$. From Theorem 3.1, we know that $[V(\lambda): L(\lambda-\alpha)]=1$. On the other hand, we can compute this multiplicity again, this time using Theorem 3.2 , to get the following corollary.

Corollary 3.3. Let $\lambda=w(\Lambda+\rho)-\rho$ be as above. Then the constant $c(\lambda)$ in Theorem 3.2 is equal to 1.

4. Kazhdan-Lusztig type multiplicity formula.

4.1. A reduction to the case of Kac-Moody algebras.

Theorem 4.1. Let $\mathfrak{g}(A)$ be a GKM algebra associated to a symmetrizable $\operatorname{GGCM} A=\left(a_{i j}\right)_{i, j \in I}$. Let $\Lambda \in P_{+}$, and $(w, \beta),\left(z, \beta^{\prime}\right) \in W \times \mathscr{A}(\Lambda)$. Then we have

$$
\left[V((w, \beta) \circ \Lambda): L\left(\left(z, \beta^{\prime}\right) \circ \Lambda\right)\right] \geq P_{w, z}(1) \cdot P_{\beta, \beta^{\prime}}
$$

where $P_{w, z}(q)$ is the Kazhdan-Lusztig polynomial in q for W, and $P_{\beta, \beta^{\prime}}=1$ if $\beta^{\prime} \geqslant \beta$, and $=0$ otherwise. Moreover, the equality holds if $\beta=\beta^{\prime}$.

Sketch of proof. The Kazhdan-Lusztig multiplicity formula for symmetrizable Kac-Moody algebras states that if $a_{i i}=2$ for all $i \in I$ (in this case $\mathscr{A}(\Lambda)=\{0\}$), then the equality holds for any $w, z \in W$ in the theorem. We can apply this celebrated result to the Kac-Moody algebra $\mathfrak{g}\left(A_{I^{r e}}\right)$ associated to the submatrix $A_{I^{r e}}:=\left(a_{i j}\right)_{i, j \in I^{r e}}$, a generalized Cartan matrix, of the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$. Here the Kac-Moody algebra $g\left(A_{I^{r e}}\right)$ is embedded into $\mathfrak{g}(A)$ as a canonical subalgebra with Weyl group W. Therefore, the theorem can be proved by the same argument as the one for [10, Theorem 3.4].
4.2. Main result. In this subsection, we assume that the GGCM $A=$ $\left(a_{i j}\right)_{i, j \in I}$ satisfies the condition that $a_{i i} \neq 0(i \in I)$. Note that, in this case, the set $\mathscr{A}(\Lambda)$ coincides with the set $\&(\Lambda)$ for $\Lambda \in P_{+}$.

By double induction on $\ell(z)-\ell(w)$ and $\mathrm{ht}\left(\beta^{\prime}\right)-\mathrm{ht}(\beta)$, using Theorem 4.1 as the starting point of the induction, and Theorem 3.2 together with Corollary 3.3 for the induction step, we can prove our main theorem.

Theorem 4.2. Let $\mathfrak{g}(A)$ be a GKM algebra associated to a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfying the condition that $a_{i i} \neq 0(i \in I)$. Let $\Lambda \in P_{+}$, and $(w, \beta),\left(z, \beta^{\prime}\right) \in W \times \mathscr{A}(\Lambda)$. Then we have

$$
\left[V((w, \beta) \circ \Lambda): L\left(\left(z, \beta^{\prime}\right) \circ \Lambda\right)\right]=P_{w, z}(1) \cdot P_{\beta, \beta^{\prime}},
$$

where $P_{\beta, \beta^{\prime}}$ is as in Theorem 4.1.

From Theorem 4.2 together with Theorem 2.5, we have the following
Theorem 4.3. Let $\mathfrak{g}(A)$ be a GKM algebra associated to a symmetrizable $\operatorname{GGCM} A=\left(a_{i j}\right)_{i, j \in I}$ with $a_{i i} \neq 0(i \in I)$. Let $\Lambda \in P_{+}$. Then, for $(w, \beta) \in$ $W \times \mathscr{A}(\Lambda)$, we have, in the algebra \mathscr{E},

$$
\operatorname{ch} V((w, \beta) \circ \Lambda)=\sum_{\left(z, \beta^{\prime}\right) \in W \times \mathcal{A}(\Lambda)} P_{w, z}(1) \cdot P_{\beta, \beta^{\prime}} \cdot \operatorname{ch} L\left(\left(z, \beta^{\prime}\right) \circ \Lambda\right)
$$

Equivalently, for $(w, \beta) \in W \times \mathscr{A}(\Lambda)$, we have, in the algebra \mathscr{E},
$\operatorname{ch} L((w, \beta) \circ \Lambda)=$
$=\sum_{\left(z, \beta^{\prime}\right) \in W \times \mathscr{A}(\Lambda)}(-1)^{\left(\ell(z)+\mathrm{ht}\left(\beta^{\prime}\right)\right)-(\ell(w)+\mathrm{ht}(\beta))} Q_{w, z}(1) \cdot P_{\beta, \beta^{\prime}} \cdot \operatorname{ch} V\left(\left(z, \beta^{\prime}\right) \circ \Lambda\right)$.
Here $Q_{w, z}(q)(z \in W)$ are the inverse Kazhdan-Lusztig polynomials in q for W (see [6]).

Remark. In view of the Weyl-Kac-Borcherds character formula for $L(\Lambda)$ with $\Lambda \in P_{+}$(see [1], [3, Ch. 11]), the restriction on the GGCM $A=$ $\left(a_{i j}\right)_{i, j \in I}$ in Theorems 4.2 and 4.3, that $a_{i i} \neq 0(i \in I)$, seems to be essential.

References

[1] R. E. Borcherds: Generalized Kac-Moody algebras. J. Algebra, 115, 501-512 (1988).
[2] L. Casian: Kazhdan-Lusztig multiplicity formulas for Kac-Moody algebras. C. R. Acad. Sci. Paris, 310, 333-337 (1990).
[3] V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge Univ. Press, Cambridge (1990).
[4] V. G. Kac and D. A. Kazhdan: Structure of representations with highest weight of infinite-dimensional Lie algebras. Adv. in Math., 34, 97-108 (1979).
[5] M. Kashiwara: Kazhdan-Lusztig conjecture for a symmetrizable Kac-Moody Lie algebra. Progress in Math., 87, Birkhäuser, Boston, pp. 407-433 (1990).
[6] M. Kashiwara and T. Tanisaki: Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebra. II. Progress in Math., 92, Birkhäuser, Boston, pp. 159-195 (1990).
[7] S. Naito: Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. Proc. Japan Acad., 69A, 27-31 (1993).
[8] S. Naito: The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. I. Publ. RIMS, Kyoto Univ., 29, 709-730 (1993).
[9] A. Rocha-Caridi and N. R. Wallach: Highest weight modules over graded Lie algebras: Resolutions, filtrations and character formulas. Trans. Amer. Math. Soc., 277, 133-162 (1983).
[10] K. Suto: On the Kazhdan-Lusztig conjecture for Kac-Moody algebras. J. Math. Kyoto Univ., 27, 243-258 (1987).

