On Contiguity Relations of the Confluent Hypergeometric Systems

By Hironobu KIMURA,*) Yoshishige HARAOKA,**) and Kyoichi TAKANO***) (Communicated by Kiyosi ITÔ, M. J. A., Feb. 14, 1994)

Introduction. This paper concerns the contiguity relations for the confluent hypergeometric systems M_{λ} (CHG system, for short) defined on the space $Z_{r,n}$ of $r \times n$ complex matrices of maximum rank r < n. As for the definition of the CHG systems and notations employed in this paper, we adopt those of [7].

In [4], we gave a Lie algebra of contiguity operators (see Definition 2.1) in an explicit form. In the present paper, we show that the contiguity operators, obtained in [4], appear in a natural manner in connection with the root space decomposition of the Lie algebra $\mathfrak{gl}_n(C)$ with respect to the maximal abelian subalgebra $\mathfrak{h} = LieH_{1}$.

1. Root space decomposition. Let $H = H_{\lambda} = J(\lambda_1) \times \cdots \times J(\lambda_l)$ be a maximal abelian subgroup of GL(n, C) corresponding to the composition $\lambda = (\lambda_1, \dots, \lambda_l)$ of n, where $J(\lambda_k)$ be the Jordan group of size λ_k .

In the following, we often decompose an $n \times n$ matrix X into blocks according to the composition λ as

$$X = (X_{ij})_{1 \le i,j \le l},$$

 $X=(X_{ij})_{1\leq i,j\leq l},$ where X_{ij} is a $\lambda_i\times\lambda_j$ matrix, which will be called (i,j)-block of X.

We denote by
$$\mathfrak{h}$$
 the Lie algebra of H , which is given by
$$\mathfrak{h} = \left\{ h = \bigoplus_{i=1}^{l} h^{(i)}; \quad h^{(i)} = \sum_{k=0}^{\lambda_i-1} h_k^{(i)} \Lambda_{\lambda_i}^k, h_k^{(i)} \in \mathbf{C} \right\}$$

and is a maximal abelian subalgebra of $\mathfrak{gl}_n=\mathfrak{gl}_n(C)$. The dual space of \mathfrak{h} is denoted by \mathfrak{h}^* . For any $h \in \mathfrak{h}$, we consider an endmorphism $ad \ h: \mathfrak{gl}_n \longrightarrow \mathfrak{gl}_n$ defined by

$$(ad \ h)X := [h, X] = hX - Xh.$$

We say that a non zero element $\beta \in \mathfrak{h}^*$ is a *root* for \mathfrak{h} if the vector space $g_{\beta} := \{ X \in \mathfrak{gl}_n ; (ad \ h - \beta(h)) X = 0 \text{ for all } h \in \mathfrak{h} \}$

is of dimension greater than or equal to 1. The vector space \mathfrak{g}_{β} will be called the root subspace. Note that $g_0 = \mathfrak{h}$.

Let β_j $(j=1,\ldots,l)$ be an element of \mathfrak{h}^* which sends the matrix $\bigoplus_{k=1}^l (\sum_{i=0}^{\lambda_k-1} h_i^{(k)} \Lambda_{\lambda_k}^i)$ to the common diagonal element $h_0^{(j)}$ of (j,j)-block. We see that the set Δ of non zero roots for $\mathfrak h$ is given by

$$\Delta = \{\beta_i - \beta_j; i, j = 1, \ldots, l, i \neq j\}.$$

Proposition 1.1. For any root $\beta_i - \beta_i \in \Delta$,

$$g_{\beta_i-\beta_j}=CX_{\beta_i-\beta_j},$$

- Department of Mathematical Sciences, University of Tokyo.
- Department of Mathematics, Kumamoto University.
- Department of Mathematics, Kobe University.

where $X_{\beta_i-\beta_i} \in \mathfrak{gl}_n$ is a matrix element whose only non zero entry locates at the position of the first row and the last column of (i, j)-block.

We define a linear subspace
$$\mathfrak{g}$$
 of \mathfrak{gl}_n by
$$\mathfrak{g}=\mathfrak{h}+\sum_{\beta\in\Delta}\mathfrak{g}_\beta \text{ (direct sum)}.$$

Note that g is a Lie subalgebra of gl_n .

We study the relation among the generators of \mathfrak{g} . Let $H_m^{(i)}$ be an element of \mathfrak{gl}_n such that the (i, i)-block is $\Lambda_{\lambda_i}^m$ and the others are zero matrices. Then

$$\mathfrak{h} = \sum_{i=1}^{l} \sum_{m=0}^{\lambda_i - 1} CH_m^{(i)} \text{ (direct sum)}$$

and g is spanned by

$$B := \{H_m^{(i)}, X_{\beta_i - \beta_j}; i, j = 1, ..., l, m = 0, ..., \lambda_i - 1\}$$

over \boldsymbol{C} .

Proposition 1.2. The elements of B satisfy the commutation relations:

$$\begin{split} [h,\,X_{\beta}] &= \beta(h)X_{\beta}, & \text{for } h \in \mathfrak{h},\,\beta \in \varDelta \\ [X_{\beta_{i}-\beta_{i}},\,X_{\beta_{j}-\beta_{k}}] &= \delta_{\lambda_{j}1}X_{\beta_{i}-\beta_{k}} & \text{for } i \neq k \\ [X_{\beta_{i}-\beta_{i}},\,X_{\beta_{j}-\beta_{i}}] &= \delta_{\lambda_{j}1}H_{\lambda_{i}-1}^{(i)} - \delta_{\lambda_{i}1}H_{\lambda_{j}-1}^{(j)} \\ [X_{\beta},\,X_{\gamma}] &= 0 & \text{for } \beta,\,\gamma \in \varDelta,\,\beta + \gamma \not\in \varDelta \,\cup\,\{0\}. \end{split}$$

2. Contiguity operators and contiguity relations. Let \mathcal{A} be the Weyl algebra on $Z_{r,n}$, i.e. the set of linear differential operators with polynomial coefficients in $z \in Z_{r,n}$ which is equipped with a natural additive structure and the multiplicative structure given by composition as operators.

Let
$$\mathcal{L}_{\lambda}(\alpha)$$
 be the left ideal of \mathcal{A} generated by the operators $L_m^{(k)} - \alpha_m^{(k)}, \quad k = 1, \dots, l, \ m = 0, \dots, \lambda_k - 1,$ $M_{ij} + \delta_{ij}, \quad i, j = 0, \dots, \tau - 1,$ $\square_{ij,pq}, \quad i, j = 0, \dots, \tau - 1, \ p, \ q = 0, \dots, n - 1$

which defines the CHG system $M_{\lambda}(\alpha)$. We denote by $\mathcal{A}(\alpha)$ the sheaf of solutions of the system $M_{\lambda}(\alpha)$.

Definition 2.1. An element $L \in \mathcal{A}$ is said to be a *contiguity operator* for the system M_{λ} if there is a $\zeta \in \mathbf{Z}^n$ such that L defines a sheaf homomorphism

(2.1)
$$L: \mathcal{S}(\alpha) \to \mathcal{S}(\alpha + \zeta).$$

It is to be noted that $L \in \mathcal{A}$ satisfies (2.1) if and only if

$$QL \in \mathcal{L}(\alpha)$$
 for any $Q \in \mathcal{L}(\alpha + \zeta)$.

In this section, we change the indexing of entries of an element $z \in Z_{r,n}$ as follows:

$$z = (z^{(1)}, \ldots, z^{(l)}),$$

where
$$z^{(k)}$$
 is a $r \times \lambda_k$ matrix,

$$z^{(k)} = (z_0^{(k)}, \dots, z_{\lambda_k-1}^{(k)}), \quad z_j^{(k)} = {}^t(z_{0j}^{(k)}, \dots, z_{r-1,j}^{(k)}).$$
Take $X \in \mathfrak{g}($ and let $\{\text{eyn } sX\}$ be a 1-parameter subgroup

Take $X \in \mathfrak{gl}_n$ and let $\{\exp sX\}$ be a 1-parameter subgroup of $GL(n, \mathbb{C})$ generated by X. Define a linear differential operator L_X acting on the sheaf of C^{∞} function on $Z_{r,n}$ by

(2.2)
$$L_{x}f(z) := \frac{d}{ds} f(z \exp sX) \big|_{s=0}.$$

Now we take
$$X=X_{\beta_i-\beta_j}$$
 in (2.2). Noting that
$$\exp sX_\beta=E+sX_\beta\in GL(n,\ C)$$

for $X_{\beta} \in \mathfrak{g}_{\beta}$ and sufficiently small |s|, we have

$$L_{X_{eta_i-eta_j}} = \sum\limits_{k=0}^{r-1} z_{k0}^{(i)} \, rac{\partial}{\partial z_{k,\lambda_i-1}^{(j)}} \, .$$

If we take $X=H_m^{(i)}$ in (2.2) we get $L_{H_m^{(i)}}=L_m^{(i)}$, the operator in the system M_{λ} . The operators L_X ($X \subseteq B$) generate a Lie algebra $\tilde{\mathfrak{g}}$ isomorphic to \mathfrak{g} .

Let $e_0^{(i)}$ $(i=1,\ldots,l)$ be a unit vector in the parameter space C^n whose non zero component is in the first position of the i-th block.

By using the integral representation of solutions of M_{λ} ([7], Proposition 1.3), we obtain

Theorem 2.2. For any root $\beta_i - \beta_j \in \Delta$ $(i \neq j)$, the operator $L_{X_{\beta_i - \beta_i}}$ is a contiguity operator for M_{λ} such that

$$L_{X_{\theta,-\theta_i}}$$
: $\mathcal{S}(\alpha) \to \mathcal{S}(\alpha + e_0^{(i)} - e_0^{(j)})$.

$$L_{X_{\beta_i-\beta_j}}: \mathcal{S}(\alpha) \to \mathcal{S}(\alpha + e_0^{(i)} - e_0^{(j)}).$$
 More precisely, for any $\Phi(z; \alpha) \in \mathcal{S}(\alpha)$, we have
$$L_{X_{\beta_i-\beta_j}}\Phi(z; \alpha) = \alpha_{\lambda_{j-1}}^{(j)}\Phi(z; \alpha + e_0^{(i)} - e_0^{(j)}).$$

Remark 2.3. (i) The differential operator $L_{X_{\beta_i-\beta_j}}$ is just the operator P_{ij} obtained in [4].

(ii) The Lie algebra \tilde{g} in this paper is larger than that of [4]. The difference of two Lie algebras comes from the fact that $\tilde{\mathfrak{g}}$ is obtained from that of [4] by adding $L_m^{(i)}(i = 1, ..., l; m = 0, ..., \lambda_i - 2)$.

References

- [1] K. Aomoto: Les équation aux différences linéaires et les intégrales des functions multiformes. J. Fac. Sci. Univ. Tokyo, Sec. IA, 22, 271-297 (1975).
- [2] I. M. Gelfand: General theory of hypergeometric functions. Dokl. Akad. Nauk. SSSR, 288, 14-48 (1986); English translation Soviet Math. Dokl., 33, 9-13 (1986).
- [3] I. M. Gelfand, V. S. Retakh, and V. V. Serganova: Generalized Airy functions, Schubert cells, and Jordan groups. ibid, 298, 17-21 (1988); ibid., 37, 8-12
- [4] Y. Haraoka and H. Kimura: Contiguity relations of the generalized confluent hypergeometric functions. Proc. Japan Acad., 69A, 105-110 (1993).
- [5] K. Iwasaki et al.: From Gauss to Painlevé. Vieweg Wiesbaden (1991).
- [6] H. Kimura, Y. Haraoka, and K. Takano: The generalized confluent hypergeometric functions. Proc. Japan Acad., **68**A, 290-295 (1992).
- [7] —: On confluences of the general hypergeometric systems, ibid., 69A, 99-104 (1993).
- [8] W. Miller: Lie theory and generalizations of the hypergeometric functions. SIAM J. Appl. Math., **25**, 226–235 (1973).
- [9] T. Sasaki: Contiguity relations of Aomoto-Gelfand hypergeometric functions and applications to Appell's system F_3 and Goursat's ${}_3F_2$, ibid., 22, 821-846 (1991).