75. Hilbert Spaces of Analytic Functions Associated with Generating Functions of Spherical Functions
 $$
\text { on } U(n) / U(n-1)
$$

By Shigeru Watanabe
The University of Aizu
(Communicated by Shokichi IYANAGA M. J. A., Dec. 12, 1994)

1. Introduction. Let \boldsymbol{R} or \boldsymbol{C} be the field of real or complex numbers, $S\left(\boldsymbol{R}^{n}\right)$ or $S\left(\boldsymbol{C}^{n}\right)$ the unit sphere in \boldsymbol{R}^{n} or \boldsymbol{C}^{n} and $x \mapsto \bar{x}$ the usual conjugation in \boldsymbol{C}.

We denote by F the Hilbert space of analytic functions $f(w)$ of n complex variables $w={ }^{t}\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \boldsymbol{C}^{n}$, with the inner product defined by

$$
(f, g)=\pi^{-n} \int_{C^{n}} \overline{f(w)} g(w) \exp \left(-\left|w_{1}\right|^{2}-\cdots-\left|w_{n}\right|^{2}\right) d w_{1} \cdots d w_{n}
$$

where

$$
d w_{1} \cdots d w_{n}=d u_{1} \cdots d u_{n} d v_{1} \cdots d v_{n}, w_{j}=u_{j}+i v_{j}\left(u_{j}, v_{j} \in \boldsymbol{R}\right)
$$

and by H the usual Hilbert space $L^{2}\left(\boldsymbol{R}^{n}\right)$.
V. Bargmann constructed in [1] a unitary mapping A from H onto F given by an integral operator whose kernel is considered as a generating function of the Hermite polynomials. More precisely, $f=A \phi$ for $\phi \in H$ is defined by

$$
f(w)=\int_{R^{n}} A(w, t) \phi(t) d^{n} t
$$

where

$$
A(w, t)=\pi^{-n / 4} \prod_{j=1}^{n} \exp \left\{-\frac{1}{2}\left(w_{j}^{2}+t_{j}^{2}\right)+2^{1 / 2} w_{j} t_{j}\right\}
$$

On the other hand, in [5] we showed that similar constructions are possible for the Gegenbauer polynomials $C_{m}^{\lambda}, m=0,1,2, \ldots$, which essentially give the zonal spherical functions on the homogeneous space $S O(n) /$ $S O(n-1) \cong S\left(\boldsymbol{R}^{n}\right)$. That is to say, let F_{λ} be the Hilbert space of analytic functions f of one complex variable on the unit disk B in \boldsymbol{C}, with the inner product given by

$$
\langle f, g\rangle_{\lambda}=\int_{B} \overline{f(w)} g(w) \rho_{\lambda}\left(|w|^{2}\right) d u d v \quad(w=u+i v, u, v \in \boldsymbol{R})
$$

where
$\rho_{\lambda}(t)=\left[\begin{array}{ll}\frac{1}{\Gamma(2 \lambda-1)} t^{\lambda-1} \int_{t}^{1} s^{-\lambda}(1-s)^{2 \lambda-2} d s & (\lambda>1 / 2) \\ t^{\lambda-1}\left\{\frac{\Gamma(1-\lambda)}{\Gamma(\lambda)}-\frac{1}{\Gamma(2 \lambda-1)} \int_{0}^{t} s^{-\lambda}(1-s)^{2 \lambda-2} d s\right\} & (0<\lambda \leq 1 / 2),\end{array}\right.$
and let K_{λ} be the usual L^{2} space on the open interval $(-1,1)$ with respect to the measure $\left(1-x^{2}\right)^{\lambda-1 / 2} d x$. Then we have the following proposition (cf.
[5]).
Proposition 1. A unitary operator, $f=A_{\lambda} \phi$, of K_{λ} onto F_{λ} is defined by

$$
f(w)=\int_{-1}^{1} A_{\lambda}(w, t) \phi(t)\left(1-t^{2}\right)^{\lambda-1 / 2} d t
$$

where

$$
\begin{aligned}
A_{\lambda}(w, t) & =\frac{2^{\lambda-1 / 2} \Gamma(\lambda+1)}{\pi} \frac{1-w^{2}}{\left(1-2 w t+w^{2}\right)^{\lambda+1}} \\
& =\frac{2^{\lambda-1 / 2} \Gamma(\lambda)}{\pi} \sum_{m=0}^{\infty}(m+\lambda) C_{m}^{\lambda}(t) w^{m}
\end{aligned}
$$

We should remark that $A_{\lambda}(w, t)$ can be regarded as a generating function of the Gegenbauer polynomials and the following generating function expansion plays an important role in the proof of this proposition.

$$
\left(1-2 w t+w^{2}\right)^{-\lambda}=\sum_{m=0}^{\infty} C_{m}^{\lambda}(t) w^{m}, \quad(-1<t<1,|w|<1)
$$

As stated above, the Gegenbauer polynomials give the spherical functions on the space $S O(n) / S O(n-1) \cong S\left(\boldsymbol{R}^{n}\right)$, more precisely, for a zonal spherical function ϕ on $S O(n) / S O(n-1) \cong S\left(\boldsymbol{R}^{n}\right)$, there exists a unique nonnegative integer p such that

$$
\phi(b)=C_{p}^{(n-2) / 2}\left(b_{1}\right) / C_{p}^{(n-2) / 2}(1), b={ }^{t}\left(b_{1}, \ldots, b_{n}\right) \in S\left(\boldsymbol{R}^{n}\right) .
$$

Here the identification $S O(n) / S O(n-1) \cong S\left(\boldsymbol{R}^{n}\right)$ is given by $k S O(n-1)$ $\mapsto k e_{1}, k \in S O(n)$ and $e_{1}={ }^{t}(1,0, \ldots, 0) \in S\left(\boldsymbol{R}^{n}\right)$.

Let us turn to the analogous geometrical object $U(n) / U(n-1) \cong$ $S\left(\boldsymbol{C}^{n}\right)$. Let $H_{p, q}^{(n)}$ be the space of restrictions to $S\left(\boldsymbol{C}^{n}\right)$ of harmonic polynomials $f(\xi, \bar{\xi})$ on \boldsymbol{C}^{n} which are homogeneous of degree p in ξ and degree q in $\bar{\xi}$. Then it is known (cf. [4], [3]) that $H_{p, q}^{(n)}$ is $U(n)$-invariant and irreducible, and moreover $L^{2}\left(U(n) / U^{\prime}(n-1)\right)=\bigoplus_{p, q=0}^{\infty} H_{p, q}^{(n)}$. In what follows, we denote by $\phi_{p, q}^{(n)}$ the zonal spherical function which belongs to $H_{p, q}^{(n)}$ (cf. [4]).

The purpose of the present paper is to give a construction similar to that for the Hermite or Gegenbauer case for the functions $\phi_{p q}^{(n)}$. The proof will be published elsewhere.
2. Result. Suppose that $n \geq 3$ throughout this section.

Let $\lambda>-1$ and we denote by ρ_{λ} the function on the open set $(0,1) \times$ $(0,1)$ in \boldsymbol{R}^{2} defined by

$$
\rho_{\lambda}(u, v)=(u v)^{\lambda / 2} \int_{1}^{\min (1 / u, 1 / v)} \frac{f_{\lambda}(t u, t v)}{t} d t
$$

where

$$
f_{\lambda}(u, v)=(u v)^{-\lambda / 2}\{(1-u)(1-v)\}^{\lambda} .
$$

Let \boldsymbol{F}_{λ} be the Hilbert space of analytic functions $f(\xi, \eta)$ of two complex variables $(\xi, \eta) \in B \times B$, the direct product of the unit disk B in \boldsymbol{C} with itself, with the inner product defined by

$$
\langle f, g\rangle_{\lambda}=\int_{|\xi|<1} \int_{|\eta|<1} \overline{f(\xi, \eta)} g(\xi, \eta) \rho_{\lambda}\left(|\xi|^{2},|\eta|^{2}\right) d \xi d \eta
$$

where

$$
d \xi=d \xi_{1} d \xi_{2}, d \eta=d \eta_{1} d \eta_{2}, \xi=\xi_{1}+i \xi_{2}, \eta=\eta_{1}+i \eta_{2}, \xi_{j}, \eta_{j} \in \boldsymbol{R}
$$

and let \boldsymbol{K}_{λ} be the usual L^{2} space on the unit disk B in C with respect to the measure $\left(1-|z|^{2}\right)^{\lambda+1} d x d y, z=x+i y, x, y \in \boldsymbol{R}$. If we put $\lambda=n-3$, then we have the following:

Theorem 1. A unitary operator, $f=A_{n} \varphi$, of \boldsymbol{K}_{n-3} onto \boldsymbol{F}_{n-3} is defined by

$$
f(\xi, \eta)=\int_{|z|<1} A_{n}(\xi, \eta ; z) \varphi(z)\left(1-|z|^{2}\right)^{n-2} d x d y
$$

where

$$
\begin{aligned}
A_{n}(\xi, \eta ; z) & =\frac{(n-2)(n-1)}{\pi^{3 / 2}} \frac{1-\xi \eta}{(1-\xi z-\eta \bar{z}+\xi \eta)^{n}} \\
& =\frac{n-2}{\pi^{3 / 2}} \sum_{p, q=0}^{\infty}(p+q+n-1) R_{p q}^{(n)}(z) \xi^{p} \eta^{q}
\end{aligned}
$$

(The definitions of the functions $R_{p q}^{(n)}$ will be given in Proposition 2.)
We only remark that the following proposition in [6], which gives a generating functions $\phi_{p q}^{(n)}$, is a key to solving the problem.

Proposition 2. If $w, z \in \boldsymbol{C},|w|<1,|z| \leq 1$, then

$$
\left(1-2 \operatorname{Re}(w z)+|w|^{2}\right)^{1-n}=\sum_{p, q=0}^{\infty} R_{p q}^{(n)}(z) w^{p} \bar{w}^{q}
$$

$\left.\begin{array}{l}\text { where } \\ R_{p q}^{(n)} \\ \left(b_{1}\right)\end{array}\right)=\binom{n+p-2}{p}\binom{n+q-2}{q} \phi_{p q}^{(n)}(b), b={ }^{t}\left(b_{1}, \ldots, b_{n}\right) \in S\left(\boldsymbol{C}^{n}\right)$,
and the identification $U(n) / U(n-1) \cong S\left(C^{n}\right)$ is given by $k U(n-1) \mapsto$ $k e_{1}, k \in U(n)$ and $e_{1}={ }^{t}(1,0, \ldots, 0) \in S\left(\boldsymbol{C}^{n}\right)$. The series on the right hand side converges absolutely and uniformly for $|z| \leq 1$ and $|w| \leq \rho$ for each $0<\rho<1$.

References

[1] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform Part I. Comm. Pure Appl. Math., 14, 187-214 (1961).
[2] Erdélyi, A. et al.: Higher Transcendental Functions. Vol. 2, McGraw-Hill, New York (1953).
[3] Faraut, J. and Harzallah, K.: Deux Cours d’Analyse Harmonique. Birkhäuser, Boston (1987).
[4] Johnson, K. D. and Wallach, N. R.: Composition series and intertwining operators for the spherical principal series I. Trans. Amer. Math. Soc., 229, 137-173 (1977).
[5] Watanabe, S.: Hilbert spaces of analytic functions and the Gegenbauer polynomials. Tokyo J. Math. , 13-2, 421-427 (1990).
[6] -: Generating functions and integral representations for the spherical functions on some classical Gelfand pairs. J. Math. Kyoto Univ., 33-4, 1125-1142 (1993).
[7] -: Generating function for the spherical functions on a Gelfand pair of excep. tional type. Tokyo J. Math., 17-1, 229-232 (1994).

