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72. Triangles and Elliptic Curves. III

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A.
(Communicated by Shokichi [IYANAGA M.J. A., Dec. 12, 1994)

This is a continuation of my preceding papers [2], [3] which will be
referred to as (I), (I) in this paper. In (II), to each triple (I, m, #) of indepen-
dent linear forms on k°, k being the algebraic closure of a field k of charac-
teristic not 2, we associated a space T = {t € k°; (I* — m®) m® — n*) n* —
I%) # 0} and studied a relationship of T to a family of plane elliptic curves.
In this paper, we shall obtain a parametrization of T by classical elliptic
functions when k = C.V

§1. Still over k. Let ={w=W,N) € kX k; MN(M — N) # 0}.
For each w € £, let
(1.1) Ew)=UtEe;n+M=10n"+N=m",
an affine part of an elliptic curve in p? (k). Then we obtain a surjective map
p:T— 0 given by

(1.2) pO = (*—n®, m* — nd).
Since we observe that

(1.3) p Hw) = E,(w), o€ Q,
we have

(1.4) T= U Ey(w) (disjoint).

weR
To each w = (M, N) we associate an elliptic curve E, in P?(k) given
(affinely) by

(1.5) E,:;y’=xx+ M+ N).
Then we observe that a map 7,: Eg(w) = E,, @ = (M, N) € 2, defined by
(1.6) T, (D = (n*, bmn)

makes sense, for x(x + M) (x + N) = nz(n2 + M) (#n* + N) = (mn)® =

§2. The map O, Denote by 9,(v|7),i=0,1,2,3,vE C, t € #,
the upper half plane, the Jacobi theta functions. When 7 is fixed, we write
9,(v) instead of &;(v| 7). We write 9, = 9,(0) = ,(0| 7) for simplicity.
The lattice L, = Z + Z7 is the set of zeros of 9,(v) and 9;(v) and
9;(v) have no common zeros if ¢ # j. We introduce the following notation:

9,\? 95\? 9, 9,
k=k<r)=(8—2),k’=k’<r>=(—z) Vk = gh K =g
/k g" K= K(T)“-— 92, u=2Kv=2K(Dv,

where # is taken to be a new complex variable.
Now define a map @, : C— P°(C) by

D See [1} and/or [5] for standard notations.
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@) 6.0 = G = 9,0 : [T 9, VE 8,00,
Then O, induces an analytic group isomorphism:
(2.2) C/@4K(DL,) = E(— 1, — k*(2),

where E(M, N) denotes the space elliptic curve defined by
(2.3) EM,N) ={x= (%,:2,:x,: x3) € P’(C) ; xl + Mx}
=x22,x§+Nxf=x: ,

where M, N € C with MN(M — N) # 0 ([4] Theorem 4.2).

Next, we need Jacobi’s elliptic functions, fixinga 7 € X :

sn(u, k) = 71753;—83, en(u, k) = % gzgz;, dn(u, k) = VK zzgg

with relations
(2.4) en’(u, k) =1— sn’(u, k), dn’u, k) =1 — kK’sn’(u, k).
Since sn(u, k) does not vanish on C — (4k)L_, the following map @,* :C —
(4k)L,— C? given by

* 1 cen(u, k) dn(u, k)

(2.5) O: (w) = (sn(u, k) sn(u, k)’ sn(u, k))’
makes sense. Finally, we call ¢ an embedding of C° into P>(C) given by
(2.6) (x,y,2)~(x:1:y:2)
We verify the commutativity of the following diagram easily:

c %
(2.7) PYO)

y Le

9*
C— 4K)L, . c’

83. A covering S— 7. Returning to the space T in the beginning of
the paper, with k= C this time, denote by @ the matrix in
GL,(C) determined by the condition

1) a
(3.1) ot=|m@® |, t=1|b | C®
n(t) c

Therefore T is determined by @. From now on, we denote by 7, the space T
corresponding to ® = 1 € GL,(C). Note that T, = @®T.? In order to make a
covering space S of T as small as possible, we first let

(3.2) C'={a=r":r>0,0=06< 1.
Next let
(3.3) D(@2) = D, U D,

where D, ={z€#;0<Rez=1,|z—1/2|21/2},D,={z€#;~1
<Rez=0,|z+1/2]|>1/2}. In other words, D(2) is the standard fun-
damental domain for I'(2)\ #, with

?  While working over algebraically closed fields such as C, we may assume that
@ = 1 without loss of generality. However, the choice of @ # 1 matters to us when

—110
other fields are considered. See, e.g., (I) and (1.7) of (II) where ¢=§< 11 0)

. . . . 001
appears in connection with euclidean geometry.
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re)=1{Ae SL,(2);A=1mod 2}.

Finally, we let
(3.4) S={=(a,u, )€ C*"xCXDQ);ucak(t)L,}.
Defining a map ¢ : S— T amounts to defining a map ¢, :S— T, such that
¢, = D¢. So let us consider a map ¢, : S— C’ given by
cn(u, k(7))
sn(u, k(2))
dn(u, k(1))
sn(u, k(D)

1
sn(u, k(7))
We shall show that (3.5) is a covering ¢, : S— T, we are looking for. To be
more precise, we prove the following three statements (3.6)-(3.8).

(3.5) 0, (S) = «a

(3.6) 0.(S) C T,
a
Proof. Writing ¢,(s) = ¢t= <b ) we have to show that (a® — b%
c
b® — ¢®(c® — a®) # 0. This follows from (2.4), (3.5) and the property
k*(7) # 0,1. Q.E.D.
(3.7) ¢, S— T is surjective.
a
Proof. Take any t = <b ) € T,. By (1.4), thereis an w = (M, N) € Q

c
such that t € E,(w), ie, ¢ + M = a°, ¢ + N=b". Put @« = y— M. Since
N/M # 0,1 and k” is the modular function for I'(2) we can find a (unique)
7 € D(2) such that k°(t) = N/M. By the above choice of @ we have
(—c->2 —1= (—q—>2 (—c—>2 — k(0 = (£>2 which means, by (2.3), that (_c_: 1:
a a/’ \a o N ’ e o
a b

— —> € E(— 1, — k*(v)) and so, by (2.2), there is a # € C — 4K(7)L,
a’a 2 b

such that @.(u) = <— 1:— -) Now set S = (a, u, 7). Then, from (2.5)

, 1 cn(u, k()  dn(u, k() _
~(2.7), (3.5), it fo;)lows that (sn(u k(D) * sulu, k(1) * snlu, k(z‘)))
c a

0 (u) = (a o a) ie, ¢, (s) =t Q.E.D.

(3.8) Fors, = (a;, u;, 7;) € S, 1= 1,2, ¢,(s) = ¢,(s,)
if and only if &y = &y, T, = 7, and u, = u,mod 4K(z)L_.

Proof. The if-part is obvious as 4K(r))L, is the period lattice for
sn(u, k(z))), etc. Conversely, suppose that ¢,(s) = ¢,(s,). Comparing
squares of components of this vector equation, we find, using (2.4), that
al = a and k*(r) = k*(r,). Hence we have a, = @, and 7, = 7, because @,
€ C* and 7, € D(2). Therefore, putting == 17, = 7,, ¢,(sy) = ¢,(s,)
implies 0 (u,) = O (u,) and so O,(u;) = O.(u,) by (2.7). Therefore we
obtain #, = u, mod 4K(7) L, by (2.2). Q.E.D.

Remark. For each v € D(2) we write P = P, — {0} where P, is the
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standard fundamental domain for C/(4K(t)L,). Then the statements
(3.6)-(3.8) means that for the space T (determined by @) the map ¢(=
@7 ¢)) induces a bijection

(3.9) T=c'x u P}

7eD(2)

an analytic parametrization of the complement of six lines = m®)(m® —
n’)(n* — 1) = 0in C°.

§4. Differentiation. We shall look at analytically the map 7, in (1.6).
Let T be given by @ as in (3.1). If ¢(s) = ¢, s € S, t € T, then ¢,(s) = Ot.
By (3.5), we obtain a system of equations:

cn(u, k(7)) dn(u, k(7)) 1

R T 165) Ea i e 16 R i AV
If we let = z2(s) = n°(), y = y(s) = IOm ) n(d), then there is a relation
(4.2) y’'=zx@x+ M@+ N
with M = () — n*(), N = m*(t) — n’(t). Substituting (4.1) in (4.2), we
obtain, by (2.4)
(4.3) M= —a’', N=— K @Dd,
i.e., M, N do not involve #. Hence, for fixed a, 7, (4.2) is a plane elliptic
curve, We see easily that

a 0x
(4.4) Y=73 Gu
Substituting (4.4) in (4.2), we obtain
2f 0x\? 2 2 2
(4.5) a<51;> =4x(x—a)(x—k'a’).
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