25. Triangles and Elliptic Curves^{*)}

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., April 12, 1994)

In this paper, we shall obtain a family of infinitely many elliptic curves defined over an algebraic number field k so that every curve in it has positive Mordell-Weil rank with respect to k. The construction of curves is very easy: we have only to replace *right* triangles in the antique congruent number problem by *arbitrary* triangles.

§1. Arbitrary field. Let k be a field of characteristic $\neq 2$ and let \overline{k} be an algebraic closure of k, fixed once for all. For three elements a, b, c in \overline{k} , we shall put

(1.1)
$$P = \frac{1}{2} (a^2 + b^2 - c^2)$$

(1.2) $Q = \frac{1}{16} (a + b + c) (a + b - c) (a - b + c) (a - b - c)$ $= \frac{1}{16} (a^4 + b^4 + c^4 - 2a^2b^2 - 2b^2c^2 - 2c^2a^2).$

One verifies easily that

(1.3)
$$P^2 - 4Q = a^2 b^2.$$

Now consider the plane cubic:

(1.4)
$$y^2 = x^3 + Px^2 + Qx = x\left(x + \frac{P+ab}{2}\right)\left(x + \frac{P-ab}{2}\right).$$

From (1.3), (1.4), one finds that the cubic is non-singular if and only if (1.5) $abQ \neq 0.$

We shall call E the elliptic curve given by (1.4) with the condition (1.5). Referring to standard definitions on Weierstrass equations ([1] p. 46), we find the values of the discriminant and the *j*-invariant of E in terms of a, b, c, P, Q:

(1.6)
$$\Delta = (4abQ)^2 = 16D$$
, *D* being the discriminant of $x^3 + Px^2 + Qx$,
(1.7) $j = 2^8(P^2 - 3Q)^3/(abQ)^2 = 2^8(Q + a^2b^2)^3/(abQ)^2$.

(1.8) **Remark.** Although not neccessary in this paper, we mention here a basic fact. A simple calculation shows that if (a, b, c) and (a', b', c') are triples in \overline{k} with (1.5) such that a' = ra, b' = rb, c' = rc with $r \in \overline{k}^{\times}$, then they have the same *j*-invariant. Consequently, our construction $(a, b, c) \mapsto E$ induces a map:

(1.9) $P^2(\bar{k}) - H \rightarrow \bar{k}$ (moduli space of elliptic curves over \bar{k}), where H is the union of six lines a = 0, b = 0, a + b + c = 0, a + b - c = 0, a - b + c = 0 and a - b - c = 0.

(1.10) Lemma. Let E be the elliptic curve defined by a, b, $c \in \overline{k}$ with (1.5).

^{*)} Dedicated to Professor S. Iyanaga on his 88th birthday.

Triangles and Elliptic Curves

Then the point $P_0 = (x_0, y_0)$ with $x_0 = \left(\frac{1}{2}c\right)^2$, $y_0 = \frac{1}{8}c(b^2 - a^2)$ belongs to E.

In fact, since $(0, 0) \in E$, we can assume that $c \neq 0$, and we are reduced to check that $(b^2 - a^2)^2 = c^4 + 4Pc^2 + 16Q$.

§2. Number field. Let k be a finite extension of Q and σ be the ring of integers of k. For a prime ideal \mathfrak{p} of σ , we denote by $\nu_{\mathfrak{p}}$ the order function on k at \mathfrak{p} . Let a, b, c be numbers in σ satisfying, in addition to (1.5), the following conditions:

 $(2.1) \quad a+b \equiv c \mod 2,$

(2.2) $c \neq 0 \mod \mathfrak{p}$ for some $\mathfrak{p} \mid 2$.

By (2.1), one sees that P, Q in (1.1), (1.2), respectively, are both in o. Let E, be the elliptic curve (1.4) defined by a, b, c, P, Q. By the Mordell-Weil theorem the group E(k) of rational points on E is finitely generated and hence the rank of E(k) makes sense.

(2.3) **Theorem.** Notation and assumptions being as above, the rank of E(k) is positive, i.e., the elliptic curve E contains infinitely many rational points over k.

Proof. Let $P_0 = (x_0, y_0)$ be the point of E in (1.10). Clearly, P_0 belongs to E(k), and we are going to show that the order of P_0 is not finite. So assume, on the contrary, that P_0 is a point of order $m \ge 2$. From this point on, we need extensively the help of a generalization of the Nagell-Lutz theorem for number fields ([1] p. 220, Theorem 7.1). This theorem, when applied to our $P_0 = (x_0, y_0)$, says:

(a) If *m* is not a prime power, then $x_0, y_0 \in o$.

(b) If $m = \ell^n$ is a prime power, for each prime ideal \mathfrak{q} of \mathfrak{o} let $r_{\mathfrak{q}} = (\nu_{\mathfrak{q}}(\ell) / (\ell^n - \ell^{n-1})]$ ([] = the integral part).

Then
$$\nu_q(x_0) \ge -2r_q$$
 and $\nu_q(y_0) \ge -3r$

In particular, x_0 and y_0 are q-integral if $\nu_q(\ell) = 0$.

Now the assumption (2.2) implies that $\nu_{\mathfrak{p}}(c) = 0$ for a \mathfrak{p} dividing 2 and so $\nu_{\mathfrak{p}}(x_0) = -2 \nu_{\mathfrak{p}}(2) < 0$; hence $x_0 \notin \mathfrak{o}$, which shows that the case (a) does not occur. As for the case (b), assume first that $\ell \neq 2$. Take a prime $\mathfrak{p} \mid 2$ with (2.2). Then since $\nu_{\mathfrak{p}}(\ell) = 0$ we have, by the last italicized statement in (b), $0 \leq \nu_{\mathfrak{p}}(x_0) = -2\nu_{\mathfrak{p}}(2) < 0$, and the case $\ell \neq 2$ does not occur also. Therefore it remains to consider the case where $m = 2^n$, $n \geq 1$. For a prime $\mathfrak{p} \mid 2$ with (2.2), put $e = \nu_{\mathfrak{p}}(2)$. If we write $e = s2^{n-1} + r$, with $0 \leq r < 2^{n-1}$, we have $r_{\mathfrak{p}} = s$. Hence (b) implies that $-2s \leq \nu_{\mathfrak{p}}(x_0) = 2\nu_{\mathfrak{p}}(c) - 2\nu_{\mathfrak{p}}(2) = -2\nu_{\mathfrak{p}}(2) = -2e$; so $s \geq e \geq s2^{n-1}$ which is impossible unless n = 1. In this case, however, m = 2, i.e., $P_0 = (x_0, y_0)$ is of order 2 and so $0 = y_0 = \frac{1}{8} c (b^2 - a^2)$. Therefore $b = \pm a$ and, by (2.1), $c \equiv a + b \equiv 0$ mod 2, which contradicts (2.2). Thus the last case does not occur, too, Q.E.D. §3. Q (Comments). (3.1) Right triangles. Let k = Q (so $\mathfrak{o} = Z$) and

53. Q (comments). (3.1) Right triangles. Let $k = \mathbf{Q}$ (so $0 - \mathbf{Z}$) and a, b, c be integers $\neq 0$ such that gcd(a, b, c) = 1 and $a^2 + b^2 = c^2$. Then one verifies (1.5), (2.1), (2.2). We have P = 0 and $Q = -\frac{1}{4}a^2b^2 = -A^2$, where A is the area of the right triangle with integral sides. The correspond-

No. 4]

ing E is $y^2 = x^3 - A^2 x$ with $\Delta = (ab)^6 = 2^6 A^6$, $j = 2^6 3^3 = 1728$. (3.2) Search of E such that j(E) = 1728. To be more precise, let T be a set of $t = (a, b, c) \in \mathbb{Z}^3$ such that gcd(a, b, c) = 1, $a + b \equiv c \mod 2$ and $abQ \neq 0$. Let E_t be the elliptic curve (1.4) defined by t. Then, in view of (1.7), finding t such that $j(E_t) = 1728$ amounts to solve the equation $4(P^2 - 3Q)^3 - 27(abQ)^2 = 0, \quad t = (a, b, c) \in T.$ (*) Eliminating $(ab)^2$ from (*) and (1.3), we get, after a simple calculation, $2P^2 = 9Q$ if $P \neq 0$. (**)(Case P = 0 was taken care of in (3.1).) From (**) and (1.3), we get (* * *) $P=\pm 3ab, \quad Q=2a^2b^2.$ Hence E_t is isomorphic over Q to the elliptic curve $y^2 = x^3 - (ab)^2 x$. (#) (3.3) Case c is even. Let T be the same as in (3.2). Since we do not assume the condition (2.2) (i.e., c is odd) here, we can not use (2.3) to decide whether rank $E_t(Q)$, $t = (a, b, c) \in T$, is positive or not when c is even. In this case, however, one finds, using notation in (1.10), that $P_0 = (x_0, y_0) \in \mathbb{Z}^2$,

and so one has again rank $E_t(Q) > 0$ when

 $(\# \#) y_o \not\prec \sqrt{D}, \quad D = (abQ)^2.$

(Cf. the stronger form of the Nagell-Lutz theorem, [2] p. 56.)

By machine computation one obtains lots of curves with positive rank for c even. It would be nice if one could get rid of the assumption (2.2) in (2.3), at least in the case k = Q, except isosceles triangles (a = b).

References

- Silverman, J. H.: The Arithmetic of Elliptic Curves. Springer-Verlag, New York (1986).
- [2] Silverman, J. H., and Tate, J.: Rational Points on Elliptic Curves. Springer-Verlag, New York (1992).
- [3] Tunnell, J.: A classical diophantine problem and modular forms of weight 3/2. Inventiones Math., 72, 323-334 (1983).