25. Triangles and Elliptic Curves*

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., April 12, 1994)

In this paper, we shall obtain a family of infinitely many elliptic curves defined over an algebraic number field k so that every curve in it has positive Mordell-Weil rank with respect to k. The construction of curves is very easy: we have only to replace right triangles in the antique congruent number problem by arbitrary triangles.
§1. Arbitrary field. Let k be a field of characteristic $\neq 2$ and let \bar{k} be an algebraic closure of k, fixed once for all. For three elements a, b, c in \bar{k}, we shall put

$$
\begin{align*}
P & =\frac{1}{2}\left(a^{2}+b^{2}-c^{2}\right) \tag{1.1}\\
Q & =\frac{1}{16}(a+b+c)(a+b-c)(a-b+c)(a-b-c) \tag{1.2}\\
& =\frac{1}{16}\left(a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 b^{2} c^{2}-2 c^{2} a^{2}\right)
\end{align*}
$$

One verifies easily that

$$
\begin{equation*}
P^{2}-4 Q=a^{2} b^{2} . \tag{1.3}
\end{equation*}
$$

Now consider the plane cubic:

$$
\begin{equation*}
y^{2}=x^{3}+P x^{2}+Q x=x\left(x+\frac{P+a b}{2}\right)\left(x+\frac{P-a b}{2}\right) \tag{1.4}
\end{equation*}
$$

From (1.3), (1.4), one finds that the cubic is non-singular if and only if (1.5)

$$
a b Q \neq 0 .
$$

We shall call E the elliptic curve given by (1.4) with the condition (1.5). Referring to standard definitions on Weierstrass equations ([1] p. 46), we find the values of the discriminant and the j-invariant of E in terms of a, b, c, P, Q :
(1.6) $\Delta=(4 a b Q)^{2}=16 D, D$ being the discriminant of $x^{3}+P x^{2}+Q x$, (1.7) $j=2^{8}\left(P^{2}-3 Q\right)^{3} /(a b Q)^{2}=2^{8}\left(Q+a^{2} b^{2}\right)^{3} /(a b Q)^{2}$.
(1.8) Remark. Although not neccesary in this paper, we mention here a basic fact. A simple calculation shows that if (a, b, c) and ($a^{\prime}, b^{\prime}, c^{\prime}$) are triples in \bar{k} with (1.5) such that $a^{\prime}=r a, b^{\prime}=r b, c^{\prime}=r c$ with $r \in \bar{k}^{\times}$, then they have the same j-invariant. Consequently, our construction (a, b, c) $\mapsto E$ induces a map:
(1.9) $\quad P^{2}(\bar{k})-H \rightarrow \bar{k}$ (moduli space of elliptic curves over \bar{k}),
where H is the union of six lines $a=0, b=0, a+b+c=0, a+b-c$ $=0, a-b+c=0$ and $a-b-c=0$.
(1.10) Lemma. Let E be the elliptic curve defined by $a, b, c \in \bar{k}$ with (1.5).

[^0]Then the point $P_{0}=\left(x_{0}, y_{0}\right)$ with $x_{0}=\left(\frac{1}{2} c\right)^{2}, y_{0}=\frac{1}{8} c\left(b^{2}-a^{2}\right)$ belongs to E.
In fact, since $(0,0) \in E$, we can assume that $c \neq 0$, and we are reduced to check that $\left(b^{2}-a^{2}\right)^{2}=c^{4}+4 P c^{2}+16 Q$.
§2. Number field. Let k be a finite extension of \boldsymbol{Q} and \mathfrak{o} be the ring of integers of k. For a prime ideal \mathfrak{p} of \mathfrak{o}, we denote by $\nu_{\mathfrak{p}}$ the order function on k at \mathfrak{p}. Let a, b, c be numbers in \mathfrak{o} satisfying, in addition to (1.5), the following conditions:
(2.1) $a+b \equiv c \quad \bmod 2$,
(2.2) $c \not \equiv 0 \quad \bmod \mathfrak{p}$ for some $\mathfrak{p} \mid 2$.

By (2.1), one sees that P, Q in (1.1), (1.2), respectively, are both in o. Let E be the elliptic curve (1.4) defined by a, b, c, P, Q. By the Mordell-Weil theorem the group $E(k)$ of rational points on E is finitely generated and hence the rank of $E(k)$ makes sense.
(2.3) Theorem. Notation and assumptions being as above, the rank of $E(k)$ is positive, i.e., the elliptic curve E contains infinitely many rational points over k.

Proof. Let $P_{0}=\left(x_{0}, y_{0}\right)$ be the point of E in (1.10). Clearly, P_{0} belongs to $E(k)$, and we are going to show that the order of P_{0} is not finite. So assume, on the contrary, that P_{0} is a point of order $m \geq 2$. From this point on, we need extensively the help of a generalization of the Nagell-Lutz theorem for number fields ([1] p. 220, Theorem 7.1). This theorem, when applied to our $P_{0}=\left(x_{0}, y_{0}\right)$, says:
(a) If m is not a prime power, then $x_{0}, y_{0} \in \mathfrak{o}$.
(b) If $m=\ell^{n}$ is a prime power, for each prime ideal \mathfrak{q} of o let

$$
r_{\mathrm{a}}=\left(\nu_{\mathrm{a}}(\ell) /\left(\ell^{n}-\ell^{n-1}\right)\right]([]=\text { the integral part }) .
$$

Then $\nu_{q}\left(x_{0}\right) \geq-2 r_{q}$ and $\nu_{q}\left(y_{0}\right) \geq-3 r_{q}$.
In particular, x_{0} and y_{0} are q-integral if $\nu_{q}(\ell)=0$.
Now the assumption (2.2) implies that $\nu_{p}(c)=0$ for a \mathfrak{p} dividing 2 and so $\nu_{p}\left(x_{0}\right)=-2 \nu_{p}(2)<0$; hence $x_{0} \notin 0$, which shows that the case (a) does not occur. As for the case (b), assume first that $\ell \neq 2$. Take a prime $\mathfrak{p} \mid 2$ with (2.2). Then since $\nu_{p}(\ell)=0$ we have, by the last italicized statement in (b), $0 \leq \nu_{p}\left(x_{0}\right)=-2 \nu_{p}(2)<0$, and the case $\ell \neq 2$ does not occur also. Therefore it remains to consider the case where $m=2^{n}, n \geq 1$. For a prime $\mathfrak{p} \mid 2$ with (2.2), put $e=\nu_{\mathfrak{p}}$ (2). If we write $e=s 2^{n-1}+r$, with $0 \leq r<2^{n-1}$, we have $r_{p}=s$. Hence (b) implies that $-2 s \leq \nu_{p}\left(x_{0}\right)=2 \nu_{p}(c)-$ $2 \nu_{p}(2)=-2 \nu_{p}(2)=-2 e$; so $s \geq e \geq s 2^{n-1}$ which is impossible unless $n=1$. In this case, however, $m=2$, i.e., $P_{0}=\left(x_{0}, y_{0}\right)$ is of order 2 and so $0=y_{0}=\frac{1}{8} c\left(b^{2}-a^{2}\right)$. Therefore $b= \pm a$ and, by (2.1), $c \equiv a+b \equiv 0$ $\bmod 2$, which contradicts (2.2). Thus the last case does not occur, too, Q.E.D.
§3. \boldsymbol{Q} (Comments). (3.1) Right triangles. Let $k=\boldsymbol{Q}$ (so $\mathfrak{o}=\boldsymbol{Z}$) and a, b, c be integers $\neq 0$ such that $\operatorname{gcd}(a, b, c)=1$ and $a^{2}+b^{2}=c^{2}$. Then one verifies (1.5), (2.1), (2.2). We have $P=0$ and $Q=-\frac{1}{4} a^{2} b^{2}=-A^{2}$, where A is the area of the right triangle with integral sides. The correspond-
ing E is $y^{2}=x^{3}-A^{2} x$ with $\Delta=(a b)^{6}=2^{6} A^{6}, j=2^{6} 3^{3}=1728$.
(3.2) Search of E such that $j(E)=1728$. To be more precise, let T be a set of $t=(a, b, c) \in \boldsymbol{Z}^{3}$ such that $\operatorname{gcd}(a, b, c)=1, a+b \equiv c \bmod 2$ and $a b Q \neq 0$. Let E_{t} be the elliptic curve (1.4) defined by t. Then, in view of (1.7), finding t such that $j\left(E_{t}\right)=1728$ amounts to solve the equation (*) $\quad 4\left(P^{2}-3 Q\right)^{3}-27(a b Q)^{2}=0, \quad t=(a, b, c) \in T$. Eliminating $(a b)^{2}$ from $(*)$ and (1.3), we get, after a simple calculation, $(* *) \quad 2 P^{2}=9 Q$ if $P \neq 0$.
(Case $P=0$ was taken care of in (3.1).) From (**) and (1.3), we get
$(* * *) \quad P= \pm 3 a b, \quad Q=2 a^{2} b^{2}$.
Hence E_{t} is isomorphic over \boldsymbol{Q} to the elliptic curve
(\#) $\quad y^{2}=x^{3}-(a b)^{2} x$.
(3.3) Case c is even. Let T be the same as in (3.2). Since we do not assume the condition (2.2) (i.e., c is odd) here, we can not use (2.3) to decide whether rank $E_{t}(\boldsymbol{Q}), t=(a, b, c) \in T$, is positive or not when c is even. In this case, however, one finds, using notation in (1.10), that $P_{0}=\left(x_{0}, y_{0}\right) \in \boldsymbol{Z}^{2}$, and so one has again rank $E_{t}(\boldsymbol{Q})>0$ when
(\#\#) $\quad y_{o} \nmid \sqrt{D}, \quad D=(a b Q)^{2}$.
(Cf. the stronger form of the Nagell-Lutz theorem, [2] p. 56.)
By machine computation one obtains lots of curves with positive rank for c even. It would be nice if one could get rid of the assumption (2.2) in (2.3), at least in the case $k=\boldsymbol{Q}$, except isosceles triangles ($a=b$).

References

[1] Silverman, J. H.: The Arithmetic of Elliptic Curves. Springer-Verlag, New York (1986).
[2] Silverman, J. H., and Tate, J.: Rational Points on Elliptic Curves. SpringerVerlag, New York (1992).
[3] Tunnell, J.: A classical diophantine problem and modular forms of weight $3 / 2$. Inventiones Math., 72, 323-334 (1983).

[^0]: *) Dedicated to Professor S. Iyanaga on his 88 th birthday.

