19. A Continuation Principle for the 3-D Euler Equations for Incompressible Fluids in a Bounded Domain

By Taira Shirota*) and Taku Yanagisawa**)
(Communicated by Kiyosi ITÔ, M. J. A. , March 12, 1993)

1. In this paper we study the Euler equations for ideal incompressible fluids in a bounded domain Ω in \boldsymbol{R}^{3} :

$$
\begin{align*}
& u_{t}+u \cdot \nabla u+\nabla p=0, \quad \nabla \cdot u=0 \text { for } t \geq 0, x \in \Omega, \tag{1}\\
& u \cdot n=0 \text { for } t \geq 0, x \in \Gamma . \tag{2}
\end{align*}
$$

Here the boundary Γ of Ω is assumed to be of class $C^{\infty} ; t$ and x are time and space variables; $u=u(t, x)=\left(u_{1}, u_{2}, u_{3}\right)$ is the velocity and $p=p(t, x)$ is the pressure; $n=n(x)=\left(n_{1}, n_{2}, n_{3}\right)$ is the unit outward normal at $x \in \Gamma$; we write $u_{t}=\partial u / \partial t, \partial_{i}=\partial / \partial x^{i}$ for $i=1,2,3, \nabla=\left(\partial_{1}, \partial_{2}\right.$, ∂_{3}) and $u \cdot \nabla=\sum_{i=1}^{3} u_{i} \partial_{i}$.

Let $s \geq 0$ be an integer. We denote by $H^{s}\left(\Omega ; \boldsymbol{R}^{3}\right)$ the usual Sobolev space of order s on Ω taking values in \boldsymbol{R}^{3}. The norm is defined by $\|u\|_{s}^{2}=$ $\sum_{|\alpha| \leq s}\left|\partial^{\alpha} u\right|_{L^{2}(\Omega)}^{2}$, where $\partial^{\alpha}=\partial^{|\alpha|} / \partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}} \partial_{3}^{\alpha_{3}}$ with $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. For $0<T<\infty$, we put

$$
X_{s}(T)=C^{0}\left([0, T] ; H^{s}\left(\Omega ; \boldsymbol{R}^{3}\right)\right) \cap C^{1}\left([0, T] ; H^{s-1}\left(\Omega ; \boldsymbol{R}^{3}\right)\right)
$$

Now we state our main
Theorem. Let $s>2$ be an integer. Suppose that u is a solution of (1), (2) belonging to $X_{s}\left(T^{\prime}\right)$ for any $T^{\prime}<T<\infty$ such that $\|u(t)\|_{s} \uparrow \infty$ as $t \uparrow T$. Then

$$
\begin{equation*}
\int_{0}^{t}|\operatorname{rot} u(\tau)|_{L^{\infty}(\Omega)} d \tau \uparrow \infty \text { as } t \uparrow T \tag{3}
\end{equation*}
$$

This theorem is an immediate consequence of the local in time existence theorem for the initial boundary value problem (1), (2) with the initial data $u^{0} \in H^{s}\left(\Omega ; \boldsymbol{R}^{3}\right)$ satisfying $\nabla \cdot u^{0}=0$ in $\Omega, u^{0} \cdot n=0$ on Γ (see [3,6]), and the following new estimate for a smooth solution u of (1), (2) such that $u \in$ $X_{s}(T)$ with $s>2$: There exists a nondecreasing continuous function $F(t, x, y)$ ≥ 0 for $t \geq 0, x \geq 0, y \geq 0$, satisfying the estimate

$$
\begin{equation*}
\|u(t)\|_{s} \leq F\left(t,\|u(0)\|_{s}, \int_{0}^{t}|\operatorname{rot} u(\tau)|_{L^{\infty}(\Omega)} d \tau\right) \quad \text { for } t \in[0, T] \tag{4}
\end{equation*}
$$

In the sequel, C is a constant which might change line by line and $u(t, x)$ is always a smooth solution of (1), (2) in the sense mentioned above.

Such a link that exists between the accumulation of the vorticity and the passible breakdown of smooth solutions for the Euler equations was shown by Beale-Kato-Majda [2] for the motion of fluids in the entire space \boldsymbol{R}^{3}.

[^0]When Ω is a bounded domain, the arguments become more involved, because of the appearance of the boundary. Recently Ferrari [5] discussed this link for simply connected domains in \boldsymbol{R}^{3} by utilizing the Green's matrix of Solonnikov [8] for the boundary value problem of an elliptic system introduced by himself.

In order to state the reasoning in a clear-cut way, we use the theory of harmonic integrals. The crucial estimate (15) is shown by considering the generalized Biot-Savart law (6) and the representation of a parametrix of Laplacian on 2 -forms on Ω. To derive this representation, we also apply the result of [8].
2. Let $H^{s}\left(\Omega ; \Lambda^{\ell}\right)$ be the Hilbert space of ℓ-forms Λ^{ℓ} on Ω with the usual norm of $H^{s}(\Omega)$. In what follows we identify a vector field u and the vorticity rot $u=\left(w_{1}, w_{2}, w_{3}\right)$ on Ω with a 1 -form $u_{1} d x^{1}+u_{2} d x^{2}+u_{3} d x^{3}$ and a 2-form $w_{1} d x^{2} \wedge d x^{3}+w_{2} d x^{3} \wedge d x^{1}+w_{3} d x^{1} \wedge d x^{2}$ on Ω. Here the canonical metric of \boldsymbol{R}^{3} is induced into Ω. Next let d_{ℓ}, δ_{ℓ}, and $*$ denote the exterior derivative on ℓ-forms, the codifferential operator of $d_{\ell-1}$, and the Hodge star operator, respectively. ι is the inclusion map $\Gamma \rightarrow \bar{\Omega}$ and ι^{*} denotes the induced map of ι. In general, for a differentiable mapping Φ, Φ^{*} denotes its induced map. (For definitions in the above, see [9].) Then Laplacian Δ_{ℓ} on ℓ-forms and the space of harmonic ℓ-forms $\mathscr{H}_{\ell}(\Omega)$ on Ω are defined by

$$
\begin{aligned}
& \Delta_{\ell}=d_{\ell-1} \delta_{\ell}+\delta_{\ell+1} d_{\ell} \\
& \mathscr{H}_{\ell}(\Omega) \stackrel{=}{=}\left\{w \in H^{1}\left(\Omega ; \Lambda^{\ell}\right) \mid d_{\ell} w=0, \delta_{\ell} w=0 \text { on } \Omega, \iota^{*}(* w)=0\right\}
\end{aligned}
$$

We summarize the statement of the decomposition theorem on Ω as follows: (See Theorems 7.7.1-7.7.4 in [7], Theorem 10.5 in [1] with the fact remarked after (8). See also [4].)
i) For $\ell=1,2$, Laplacian Δ_{ℓ} on ℓ-forms with the domain

$$
D\left(\Delta_{\ell}\right)=\left\{w \in H^{2}\left(\Omega ; \Lambda^{\ell}\right) \mid \iota^{*}(* w)=\iota^{*}\left(* d_{\ell} w\right)=0\right\}
$$

has the kernel and the cokernel equal to $\mathscr{H}_{\ell}(\Omega)$, which is a finite dimensional subspace included in $C^{\infty}\left(\bar{\Omega} ; \Lambda^{\ell}\right)$.
ii) For $\ell=1,2$, the space $H^{s}\left(\Omega ; \Lambda^{\ell}\right)$ is decomposed as

$$
\begin{equation*}
H^{s}\left(\Omega ; \Lambda^{\ell}\right)=\mathscr{H}_{\ell}(\Omega) \oplus \delta_{\ell+1} d_{\ell} \Delta_{\ell}^{-1}\left(\mathscr{H}_{\ell}(\Omega)^{\perp}\right) \oplus d_{\ell-1} \delta_{\ell} \Delta_{\ell}^{-1}\left(\mathscr{H}_{\ell}(\Omega)^{\perp}\right) . \tag{5}
\end{equation*}
$$

Here Δ_{ℓ}^{-1} is the inverse of Δ_{ℓ} on $\mathscr{H}_{\ell}(\Omega)^{\perp}$ which is the L^{2}-orthogonal complement of $\mathscr{H}_{\ell}(\Omega)$ in $H^{s}\left(\Omega ; \Lambda^{\ell}\right)$, and all subspaces on the right side of (5) are L^{2}-orthogonal to each other.
iii) Since $u(t, x)$ is L^{2}-orthogonal to $d_{0} \delta_{1} \Delta_{1}^{-1}\left(\mathscr{H}_{1}(\Omega)^{\perp}\right)$ in (5), we obtain from ii)

$$
\begin{equation*}
u(t, x)=\sum_{i=1}^{R} \lambda_{i}(t) a_{i}(x)+\delta_{2} \Delta_{2}^{-1} d_{1} u(t, x), t \in[0, T], x \in \Omega \tag{6}
\end{equation*}
$$

where $R=\operatorname{dim} \mathscr{H}_{1}(\Omega),\left\{a_{i}(x)\right\}_{i=1}^{R} \subset C^{\infty}(\bar{\Omega})$ is an L^{2}-orthogonal basis of $\mathscr{H}_{1}(\Omega)$, and $\lambda_{i}(t)=\left(u(t, x), a_{i}(x)\right)_{L^{2}(\Omega)}, 1 \leq i \leq R$. Here we used the fact that $d_{1} \Delta_{1}^{-1}=\Delta_{2}^{-1} d_{1}$ (see p. 547 in [4]) and $d_{1} u(t, \cdot) \in \mathscr{H}_{2}(\Omega)^{\perp}$.
3. We use an appropriate parametrix of Δ_{2}. Choose an open cover of
Ω, $\left\{\mathscr{O}^{r}\right\}_{r=0}^{k}$, such that $\cup_{r=0}^{k} \mathscr{O}^{\gamma}=\Omega, \mathscr{O}^{0} \subset \subset \Omega, \overline{\mathscr{O}^{\gamma}} \cap \Gamma \neq \phi, 1 \leq \gamma \leq k$, and each $\mathscr{O}^{r}, 0 \leq \gamma \leq k$, is a bounded domain with C^{∞}-boundary $\partial \mathscr{O}^{r}$. We also assume that $\mathscr{H}_{2}\left(\mathscr{O}^{r}\right)=\{0\}, 1 \leq \gamma \leq k$. Take open subsets $\left\{\mathscr{O}_{i}^{r}\right\}_{\gamma=0}^{k}, i=1,2$, such that $\cup_{r=0}^{k} \mathscr{O}_{1}^{\gamma}=\Omega$ and

$$
\mathscr{O}_{1}^{0} \subset \subset \mathscr{O}_{2}^{0} \subset \subset \mathscr{O}^{0}, \overline{\mathfrak{O}_{1}^{r}} \subset \subset \overline{\mathscr{O}_{2}^{r}} \subset \subset \overline{\mathscr{O}^{r}} \text { in } \bar{\Omega}, 1 \leq \gamma \leq k
$$

Choose cut off functions $\left\{\varphi_{i}^{\gamma}\right\}_{\gamma=0}^{k}, i=1,2$, satisfying $\operatorname{supp} \varphi_{i}^{0} \subset \mathscr{O}_{i}^{0}$, and $\operatorname{supp} \varphi_{i}^{\gamma}$ $\subset \mathscr{O}_{i}^{\gamma} \cup \Gamma, 1 \leq \gamma \leq k$, for $i=1$, 2. In addition, these $\left\{\varphi_{i}^{\gamma}\right\}_{r=0}^{k}, i=1,2$, are chosen so as to satisfy $\sum_{\gamma=0}^{k} \varphi_{1}^{\gamma}=1$ on $\Omega, \varphi_{2}^{\gamma}=1$ on $\overline{\mathscr{O}_{1}^{\gamma}}$ for $0 \leq \gamma \leq k$, and $\partial \varphi_{2}^{\gamma} / \partial n=0$ on Γ for $1 \leq \gamma \leq k$. Next we solve the following boundary value problems:

$$
\begin{align*}
& \Delta_{2} v^{0}=f^{0} \text { in } \mathscr{O}^{0}, v^{0}=0 \text { on } \partial \mathscr{O}^{0}, \\
& \Delta_{2} v^{r}=f^{r} \text { in } \mathscr{O}^{r}, \iota_{r}^{*}\left(* v^{r}\right)=\iota_{r}^{*}\left(* d_{2} v^{r}\right)=0,1 \leq r \leq k, \tag{7}
\end{align*}
$$ where the f^{r} are assumed to be in $H^{0}\left(\mathscr{O}^{r} ; \Lambda^{2}\right), 0 \leq \gamma \leq k$, and the ι_{r} denote the inclusion maps $\partial \mathscr{O}^{\gamma} \rightarrow \overline{\mathscr{O}^{\gamma}}, 1 \leq \gamma \leq k$. Since $\mathscr{H}_{2}\left(\mathscr{O}^{r}\right)=\{0\}, 1 \leq \gamma \leq k$, we see from ii) in $\S 2$ that the problems (7) have solutions $v^{\gamma} \in H^{2}\left(\mathscr{O}^{r} ; \Lambda^{2}\right)$, $0 \leq r \leq k$. Using conventional notations, we may rewrite (7) as follows:

$$
\begin{align*}
& -\Delta v^{0}=f^{0} \text { in } \mathscr{O}^{0}, v^{0}=0 \text { on } \partial \mathscr{O}^{0}, \\
& -\Delta v^{r}=f^{r} \text { in } \mathscr{O}^{r}, v^{r} \times n^{r}=0, \nabla \cdot v^{r}=0 \text { on } \partial \mathscr{O}^{r}, 1 \leq \gamma \leq k . \tag{8}
\end{align*}
$$

Here $\Delta=\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}$ and $n^{\gamma}=n^{\gamma}(x)=\left(n_{1}^{\gamma}, n_{2}^{\gamma}, n_{3}^{\gamma}\right)$ is the unit outward normal at $x \in \partial \mathscr{O}^{\gamma}$. Notice that $-\Delta$ is an elliptic operator and the boundary conditions in (8) satisfy the complementing condition with respect to $-\Delta$ in the sense of [1]. Then by virtue of Theorem 5.1 of [8], we see that there exist 3×3 matrices $g^{\gamma}(x, y)$ defined on $\overline{\mathscr{O}^{\gamma}} \times \overline{\mathscr{O}^{\gamma}}, 0 \leq r \leq k$, such that the solutions v^{r} of (8) are expressed as

$$
\begin{equation*}
v^{\gamma}(x)=\int_{\mathscr{O}^{r}} g^{\gamma}(x, y) f^{\gamma}(y) d y, 0 \leq \gamma \leq k, \tag{9}
\end{equation*}
$$

and the following estimates hold for any multi-indices α, β :

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} g^{\gamma}(x, y)\right| \leq C|x-y|^{-1-|\alpha|-|\beta|},(x, y) \in \overline{\mathscr{O}^{\gamma}} \times \overline{\mathcal{O}^{\gamma}}, 0 \leq \gamma \leq k . \tag{10}
\end{equation*}
$$

Fix $t \in[0, T]$. Let each $\varphi_{2}^{\gamma}(x) g^{\gamma}(x, y), 0 \leq \gamma \leq k$, be the extension with respect to x of itself taking the value 0 outside of $\overline{\mathcal{O}^{r}}$. We put $q(x, y)=$ $\sum_{r=0}^{k} \varphi_{2}^{\gamma}(x) g^{\gamma}(x, y) \varphi_{1}^{\gamma}(y)$ and then set

$$
\begin{equation*}
R\left[d_{1} u\right](t, x)=\Delta \int_{\Omega} q(x, y) d_{1} u(t, y) d y+d_{1} u(t, x) \tag{11}
\end{equation*}
$$

Here $\int_{\Omega} q(x, y) d_{1} u(t, y) d y \in D\left(\Delta_{2}\right)$, as a 2 -form, by a particular choice of $\varphi_{2}^{\gamma}, 1 \leq \gamma \leq k$. Referring to (8), (9), we get by direct calculation

$$
\begin{equation*}
R\left[d_{1} u\right](t, x)=\int_{\Omega} r(x, y) d_{1} u(t, y) d y \tag{12}
\end{equation*}
$$

Here $r(x, y)$ is a 3×3 matrix depending on $x, y \in \Omega$, which consists of first order derivatives of $g^{\gamma}(x, y)$ with respect to x multiplied by $\varphi_{1}^{\gamma}(y)$ and the derivatives of $\varphi_{2}^{\gamma}(x), 0 \leq \gamma \leq k$. So, thanks again to the special choice of $\left\{\varphi_{i}^{\gamma}\right\}_{\gamma=0}^{k}, i=1,2$, we see that $r(x, y)$ is smooth on $\Omega \times \Omega$. On the other
hand, since both terms on the right side of (11) belong to $\mathscr{H}_{2}(\Omega)^{\perp}, R\left[d_{1} u\right] \in$ $\mathscr{H}_{2}(\Omega)^{\perp}$. Hence, in view of ii) in $\S 2$ and the fact remarked after (11), we finally obtain from (11)

$$
\begin{equation*}
\delta_{2} \Delta_{2}^{-1}\left(d_{1} u\right)(t, x)=\delta_{2} \int_{\Omega} q(x, y) d_{1} u(t, y) d y+\delta_{2} \Delta_{2}^{-1}\left(R\left[d_{1} u\right]\right)(t, x) \tag{13}
\end{equation*}
$$

4. We give a sketch of the proof of (4). Fix $t \in[0, T]$. Note that the pressure $p(t, x)$ is a solution of a certain Neumann problem in Ω (see the proof of Theorem 3 in [3]). Then by using Gagliardo-Nirenberg's inequality and by applying a limit argument, we obtain (see [2] for the counterpart of this inequality)

$$
\begin{equation*}
\|u(t)\|_{s} \leq\|u(0)\|_{s} \exp \left(C \int_{0}^{t}\left\{|\nabla u(\tau)|_{L^{\infty}(\Omega)}+|u(\tau)|_{L^{\infty}(\Omega)}\right\} d \tau\right) \tag{14}
\end{equation*}
$$

This estimate is given in [10]. In addition, we have

$$
\begin{align*}
& |\nabla u(t)|_{L^{\infty}(\Omega)} \leq C\left\{\|u(0)\|_{0}+1+\left(1+\log _{+}\|u(t)\|_{3}\right)\left|d_{1} u(t)\right|_{L^{\infty}(\Omega)}\right\}, \tag{15}\\
& |u(t)|_{L^{m}(\Omega)} \leq C\left\{\|u(0)\|_{0}+\left|d_{1} u(t)\right|_{L^{m}(\Omega)}\right\} . \tag{16}
\end{align*}
$$

Here $\log _{+} r:=\log r$ for $\mathrm{r} \geq 1,:=0$ for $0 \leq r<1$. Noting that $\left|d_{1} u(t)\right|_{L^{\infty}(\Omega)}=|\operatorname{rot} u(t)|_{L^{m}(\Omega)}$, and combining (14)-(16), we get the desired estimate (4) in the same way as in [2]. So we give the proof of the estimate (15). The estimate (16) is proved more directly. First, since the terms of (6) are L^{2}-orthogonal, we obtain from the fact that $\|u(t)\|_{0}=\|u(0)\|_{0}$

$$
\begin{equation*}
\left|\nabla \sum_{i=1}^{R} \lambda_{i}(t) a_{i}(x)\right|_{L^{\infty}(\Omega)} \leq\|u(0)\|_{0} \sum_{i=1}^{R}\left|\nabla a_{i}(x)\right|_{L^{m}(\Omega)} \tag{17}
\end{equation*}
$$

Next, since $r(x, y)$ in (12) is smooth on $\Omega \times \Omega$, we get by using Sobolev's inequality and Theorem 10.5 in [1]

$$
\begin{align*}
\left|\nabla \delta_{2} \Delta_{2}^{-1}\left(R\left[d_{1} u\right]\right)(t)\right|_{L^{\infty}(\Omega)} & \leq C\left|\nabla \delta_{2} \Delta_{2}^{-1}\left(R\left[d_{1} u\right]\right)(t)\right|_{W^{1, p}(\Omega)} \tag{18}\\
& \leq C\left|R\left[d_{1} u\right](t)\right|_{W^{1, p}(\Omega)} \leq C\left|d_{1} u(t)\right|_{L^{\infty}(\Omega)}
\end{align*}
$$

for $p>3$. In view of (6), (13), it remains to show pointwise estimates of the gradient of $\delta_{2} \varphi_{2}^{\gamma}(x) w^{\gamma}(t, x), 0 \leq \gamma \leq k$, where $w^{\gamma}(t, x)=\int_{\mathscr{O}^{r}} g^{r}(x, y) \varphi_{1}^{\gamma}(y)$ $\times d_{1} u(t, y) d y$. To do this, we introduce diffeomorphisms $\left\{\Phi^{\gamma}\right\}_{r=1}^{k}$ such that each Φ^{γ} maps \mathscr{O}^{γ} onto V^{γ} which is contained in $\mathscr{B}_{+}=\left\{x| | x \mid<1, x^{3}>0\right\}$, and $\overline{\mathscr{O}^{\gamma}} \cap \Gamma$ corresponds to a part of $\sigma=\left\{x| | x \mid<1, x^{3}=0\right\}$. In addition, $\left\{\left(\mathscr{O}^{\gamma}, \Phi^{r}\right)\right\}_{r=1}^{k}$ must be taken so as to be an admissible boundary coordinate system (see Definition 7.5 .2 and Lemma 7.5.1 in [7]). Fix $1 \leq \gamma \leq k$ and omit suffix γ from $\mathscr{O}^{\gamma}, w^{\gamma}, \Phi^{\gamma}$, and so on. It is easy to see that w satisfies the boundary conditions of (8) on $\overline{\mathscr{O}} \cap \Gamma$, if and only if $\tilde{w}_{1}=\tilde{w}_{2}=\partial \tilde{w}_{3} / \partial \tilde{x}^{3}=0$ on $\bar{V} \cap \sigma$ where $\tilde{x}=\Phi(x)$ and $\tilde{w}(t, \tilde{x})=\left(\Phi^{-1}\right)^{*} w(t, x)$ as 2 -forms. Then we observe that each of $\partial \tilde{w} / \partial \tilde{x}^{i}, i=1,2$, satisfies also the same boundary conditions as above on $\bar{V} \cap \sigma$. Define two differential operators $\Lambda_{i}=\sum_{j=1}^{3}$ $b_{i}^{j}(x) \partial_{j} E+B_{i}(x), i=1,2$, which act on 2 -forms v on \mathcal{O}, by $\Lambda_{i} v=\Phi^{*}\left(\partial \tilde{v} / \partial \tilde{x}^{i}\right)$. Here $b_{i}^{j}(x), E, B_{i}(x)$ are smooth functions on \mathfrak{O}, the 3×3 unit matrix, 3×3 matrices depending smoothly on $x \in \mathscr{O}$, respectively. It is obvious that $\sum_{j=1}^{3} b_{i}^{j} n_{j}=0$ on $\overline{\mathscr{O}} \cap \Gamma, i=1,2$, and each $\Lambda_{i} w$ satisfies the same boundary
conditions as in (8) on $\overline{\mathscr{O}} \cap \Gamma$. Hence we have

$$
-\Delta\left(\Lambda_{i} \varphi_{2} w\right)=F_{i}(t, x) \text { in } \mathscr{O}
$$

$$
\begin{equation*}
\left(\Lambda_{i} \varphi_{2} w\right) \times n=0, \nabla \cdot\left(\Lambda_{i} \varphi_{2} w\right)=0 \text { on } \partial \mathscr{O}, i=1,2 \tag{19}
\end{equation*}
$$

where $F_{i}(t, x)=\left(-\Lambda_{i} \varphi_{1} d_{1} u+\Lambda_{i}\left[-\Delta, \varphi_{2}\right] w+\left[-\Delta, \Lambda_{i}\right] \varphi_{2} w\right)(t, x)$. Then, by the same reasoning as used to show (9), we obtain $\left(\Lambda_{i} \varphi_{2} w\right)(t, x)=$ $\int_{\mathscr{O}} g(x, y) F_{i}(t, y) d y, i=1,2$. So, regarding δ_{2} as a system of differential operators (see (7.2.14) in [7]), we have for $i=1,2$,

$$
\begin{equation*}
\left(\Lambda_{i} \delta_{2} \varphi_{2} w\right)(t, x)=\int_{\mathscr{O}} \delta_{2, x} g(x, y) F_{i}(t, y) d y-\left[\delta_{2}, \Lambda_{i}\right] \varphi_{2} w(t, x) \tag{20}
\end{equation*}
$$

Note that Λ_{i} is also defined on 1 -forms by the same way as above. To estimate the first term on the right side of (20), we introduce an auxiliary function $\zeta(x) \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ such that $\zeta:=1$ for $|x| \leq 1,:=0$ for $|x| \geq 2$, and divide this term into two terms,

$$
\begin{aligned}
& -\int_{\mathscr{O}} \zeta((x-y) / \rho) \delta_{2, x} g(x, y)\left(\Lambda_{i} \varphi_{i} d_{1} u\right)(t, y) d y \\
& -\int_{\mathscr{O}}\{1-\zeta((x, y) / \rho)\} \delta_{2, x} g(x, y)\left(\Lambda_{i} \varphi_{1} d_{1} u\right)(t, y) d y
\end{aligned}
$$

where $0<\rho \leq \rho_{0}$ with ρ_{0} small enough. Taking $\rho:=\rho_{0}$ if $\|u\|_{3} \leq \rho_{0}^{-1 / 4},:=$ $\|u\|_{3}^{-4}$ otherwise, as in pp. 65-66 in [2] we obtain from (10)

$$
\begin{align*}
& \left|\int_{\mathscr{O}} \delta_{2, x} g(x, y)\left(\Lambda_{i} \varphi_{1} d_{1} u\right)(t, y) d y\right|_{L^{\infty}(\mathscr{O})} \tag{21}\\
& \leq C\left\{1+\log _{+}\|u(t)\|_{3}\right\}\left|d_{1} u(t, x)\right|_{L^{\infty}(\Omega)}+C .
\end{align*}
$$

By arguments similar to that used for deriving (18), we get

$$
\begin{align*}
& \left|\left[\delta_{2}, \Lambda_{i}\right] \varphi_{2} w(t)\right|_{L^{m}(\Omega)} \leq C\left|\left[\delta_{2}, \Lambda_{i}\right] \varphi_{2} w(t)\right|_{W^{1, p}(\Omega)} \tag{22}\\
& \leq C|w(t)|_{W^{2, p}(\Omega)} \leq C\left|d_{1} u(t)\right|_{L^{p}(\Omega)} \leq C\left|d_{1} u(t)\right|_{L^{\infty}(\Omega)}, i=1,2
\end{align*}
$$

for $p>3$. Further, by Hölder's inequality and Theorem 10.5 in [1], we deduce from (10) that

$$
\begin{align*}
& \left|\int_{\mathscr{O}} \delta_{2, x} g(x, y)\left(\Lambda_{i}\left[-\Delta, \varphi_{2}\right] w+\left[-\Delta, \Lambda_{i}\right] \varphi_{2} w\right)(t, y) d y\right|_{L^{\infty}(\mathscr{O})} \tag{23}\\
& \leq C|w(t)|_{W^{2,4}(\Omega)} \leq C\left|d_{1} u(t)\right|_{L^{4}(\Omega)} \leq C\left|d_{1} u(t)\right|_{L^{\infty}(\Omega)}, i=1,2
\end{align*}
$$

Accordingly, we conclude from (6), (13), (17)-(18), and (21)-(23) that the maximum norms of two tangential derivatives on \mathcal{O} are estimated by the terms of the right side of (15). Since the normal derivative of a solenoidal vector field is expressed as a sum of the tangential derivatives and the components of the vorticity, we get finally the estimate (15) on a suitable neighborhood of the boundary. We can also prove the estimate (15) on a subset of Ω far from the boundary in a similar way. Thus we end the proof of (15).

References

[1] Agmon, S., Douglis, A., and Nirenberg, L.: Comm. Pure Appl. Math., 17, 35-92 (1964).
[2] Beale, J. T., Kato, T., and Majda, A.: Comm. Math. Phys., 94, 61-66 (1984).
[3] Bourguignon, J. P., and Brezis, H.: J. Funct. Anal., 15, 341-363 (1974).
[4] Ebin, D. G.: Comm. P. D. E., 9, 539-559 (1984).
[5] Ferrari, A.: On the blow up of solutions of the 3-D Euler equations in a bounded domain (to appear in Comm. Math. Phys.).
[6] Kato, T., and Lai, C. Y.: J. Funct. Anal., 56, 15-28 (1984).
[7] Morrey, C. B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1960).
[8] Solonnikov, V. A.: Proc. Steklov Inst. Math., 116, 187-226 (1971).
[9] Westenholts, C. V.: Differential Forms in Mathematical Physics. North-Holland, Amsterdam (1978).
[10] Yanagisawa, T.: Unpublished (1992).

[^0]: *) Asahigaoka 2698-95, Hanamigawa-ku, Chiba 262.
 **) Department of Mathematics, Nara Women's University.

