17. New Criteria for Multivalent Meromorphic Starlike Functions of Order Alpha

By M. K. Aouf
Department of Mathematics, Faculty of Science, University of Mansoura, Egypt (Communicated by Kiyosi Itô, M. J. A., March 12, 1993)

$$
\begin{aligned}
& \text { Abstract: Let } M_{n+p-1}(\alpha)(p \in N=\{1,2, \ldots\}, n>-p .0 \leq \alpha<p) \\
& \text { deonte the class of functions of the form } \\
& \qquad f(z)=\frac{1}{z^{p}}+\frac{a_{0}}{z^{p-1}}+\frac{a_{1}}{z^{p-2}}+\cdots \\
& \text { which are regular and } p \text {-valent in the punctured disc } U^{*}=\{z: 0< \\
& |z|<1\} \text { and satisfy the condition } \\
& \qquad \operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(p+1)\right\}<-\frac{p(n+p-1)+\alpha}{n+p},|z|<1, \\
& 0 \leq \alpha<p \text {, where } \\
& \qquad D^{n+p-1} f(z)=\frac{1}{z^{p}(1-z)^{n+p}} * f(z) \quad(n>-p) . \\
& \text { It is proved that } M_{n+p}(\alpha) \subset M_{n+p-1}(\alpha)(0 \leq \alpha<p, n>-p) \text {. Since } \\
& M_{o}(\alpha) \text { is the class of } p \text {-valent meromorphically starlike functions of order } \\
& \alpha(0 \leq \alpha<p) \text { all functions in } M_{n+p-1}(\alpha) \text { are } p \text {-valent meromorphically } \\
& \text { starlike functions of order } \alpha \text {. Further we consider the integrals of functions } \\
& \text { in } M_{n+p-1}(\alpha) .
\end{aligned}
$$

1. Introduction. Let \sum_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\frac{a_{0}}{z^{p-1}}+\frac{a_{1}}{z^{p-2}}+\ldots(p \in N=\{1,2 \ldots\}) \tag{1.1}
\end{equation*}
$$

which are regular and p-valent in the punctured disc $U^{*}=\{z: 0<$ $|z|<1\}$ and let n be any integer greater than $-p$. A function $f(z)$ in Σ_{p} is said to be p-valent meromorphically starlike of order $\alpha(0 \leq \alpha<p)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<-\alpha \quad \text { for }|z|<1 \tag{1.2}
\end{equation*}
$$

The Hadamard product or convolution of two functions f, g in \sum_{p} will be denoted by $f * g$. Let

$$
\begin{align*}
D^{n+p-1} f(z) & =\frac{1}{z^{p}(1-z)^{n+p}} * f(z) \quad(n>-p) \tag{1.3}\\
& =\frac{1}{z^{p}}\left[\frac{z^{n+2 p-1} f(z)}{(n+p-1)!}\right]^{(n+p-1)} \tag{1.4}\\
& =\frac{1}{z^{p}}+\frac{n+p}{z^{p-1}} a_{o}+\frac{(n+p)(n+p+1)}{2!z^{p-2}} a_{1}+\cdots . \tag{1.5}
\end{align*}
$$

AMS (1980) Subject Classification. 30C45-30C50.

In this paper along with other things we shall show that a function $f(z) \in \sum_{p}$ which satisfies one of the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(p+1)\right\}<-\frac{p(n+p-1)+\alpha}{n+p}, \quad|z|<1 \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<p)$ and $n \in \boldsymbol{N}_{o}=\boldsymbol{N} \cup\{0\}$, is meromorphically p-valent starlike in U^{*}. More precisely, it is proved that, for the classes $M_{n+p-1}(\alpha)$ of functions in \sum_{p} satisfying (1.6).

$$
\begin{equation*}
M_{n+p}(\alpha) \subset M_{n+p-1}(\alpha) \quad(0 \leq \alpha<p, n>-p) \tag{1.7}
\end{equation*}
$$

holds. Since $M_{o}(\alpha)$ equals $\sum_{p}^{*}(\alpha)$ (the class of meromorphically p-valent starlike functions of order α [5]), it follows from (1.7) that all functions in $M_{n+p-1}(\alpha)$ are p-valent meromorphically starlike of order α. Further for c $>p-1$, let

$$
\begin{equation*}
F(z)=\frac{c-p+1}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t, \tag{1.8}
\end{equation*}
$$

it is shown that $F(z) \in M_{n+p-1}(\alpha)$ whenever $f(z) \in M_{n+p-1}(\alpha)$. Also it is shown that if $f(z) \in M_{n+p-1}(\alpha)$ then

$$
\begin{equation*}
F(z)=\frac{n+p}{z^{n+2 p}} \int_{0}^{z} t^{n+2 p-1} f(t) d t \tag{1.9}
\end{equation*}
$$

belongs to $M_{n+p}(\alpha)$. Some known results of Bajpai [1], Goel and Sohi [3], Ganigi and Uralegaddi [2] and Uralegaddi and Ganigi [7] are extended. In [6] Ruscheweyh obtained the new criteria for univalent functions.
2. The classes $M_{n+p-1}(\alpha)$. In proving our main results (Theorems 1 and 2 below). We shall need the following lemma due to I. S. Jack [4].

Lemma. Let $w(z)$ be non-constant and regular in $U=\{z:|z|<1\}$, $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at z_{0}, we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where k ls a real number and $k \geq 1$.

Theorem 1. $M_{n+p}(\alpha) \subset M_{n+p-1}(\alpha), 0 \leq \alpha<p$ and n is any integer greater than $-p$.

Proof. Let $f(z) \in M_{n+p}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p+1} f(z)}{D^{n+p} f(z)}-(p+1)\right\}<-\frac{p(n+p)+\alpha}{n+p} \tag{2.1}
\end{equation*}
$$

We have to show that (2.1) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(p+1)\right\}<-\frac{p(n+p-1)+\alpha}{n+p} \tag{2.2}
\end{equation*}
$$

Define $w(z)$ in U by
(2.3) $\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(p+1)=-\left\{\frac{p(n+p-1)+\alpha}{n+p}+\frac{p-\alpha}{n+p} \frac{1-w(z)}{1+w(z)}\right\}$.

Clearly $w(z)$ is regular and $w(0)=0$. Equation (2.3) may be written as

$$
\begin{equation*}
\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}=\frac{(n+p)+(n+3 p-2 \alpha) w(z)}{(n+p)(1+w(z))} \tag{2.4}
\end{equation*}
$$

Differentiating (2.4) logarithmically and using the identity

$$
\begin{equation*}
z\left(D^{n+p-1} f(z)\right)^{\prime}=(n+p) D^{n+p} f(z)-(n+2 p) D^{n+p-1} f(z) \tag{2.5}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \text { (2.6) } \frac{D^{n+p+1} f(z)}{D^{n+p} f(z)}-(p+1)+\frac{p(n+p)+\alpha}{n+p+1} \tag{2.6}\\
& =\frac{p-\alpha}{n+p+1}\left\{-\frac{1-w(z)}{1+w(z)}+\frac{2 z w^{\prime}(z)}{(1+w(z))[n+p+(n+3 p-2 \alpha) w(z)]}\right\}
\end{align*}
$$

We claim that $|w(z)|<1$ in U. For otherwise (by Jack's lemma) there exists z_{0} in U such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.7}
\end{equation*}
$$

where $\left|w\left(z_{0}\right)\right|=1$ and $k \geq 1$. From (2.6) and (2.7) we obtain

$$
\begin{align*}
& \frac{D^{n+p+1} f\left(z_{0}\right)}{D^{n+p} f\left(z_{0}\right)}-(p+1)+\frac{p(n+p)+\alpha}{n+p+1} \tag{2.8}\\
= & \frac{p-\alpha}{n+p+1}\left\{-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)}+\frac{2 k w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left[n+p+(n+3 p-2 \alpha) w\left(z_{0}\right)\right]}\right\}
\end{align*}
$$

Thus

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{D^{n+p+1} f\left(z_{0}\right)}{D^{n+p} f\left(z_{0}\right)}-(p+1)+\frac{p(n+p)+\alpha}{n+p+1}\right\} \tag{2.9}\\
\geq \frac{p-\alpha}{2(n+p+1)(n+2 p-\alpha)}>0
\end{gather*}
$$

which contradicts (2.1). Hence $|w(z)|<1$ and from (2.3) it follows that $f(z) \in M_{n+p-1}(\alpha)$.

Theorem 2. Let $f(z) \in \sum_{p}$ satisfy the condition

$$
\begin{align*}
\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f\left(z_{0}\right)}-\right. & (p+1)\} \tag{2.10}\\
& <\frac{(p-\alpha)-2(p(n+p-1)+\alpha)(c+1-\alpha)}{2(n+p)(c+1-\alpha)}
\end{align*}
$$

for $0 \leq \alpha<p, n>-p$, and $c>p-1$. Then

$$
\begin{equation*}
F(z)=\frac{c-p+1}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t \tag{2.11}
\end{equation*}
$$

belongs to $M_{n+p-1}(\alpha)$.
Proof. From the definition of $F(z)$, we have
(2.12) $z\left(D^{n+p-1} F(z)\right)^{\prime}=(c-p+1) D^{n+p-1} f(z)-(c+1) D^{n+p-1} F(z)$.

Using (2.12) and the identity (2.5), the condition (2.10) may be written as
(2.13) $\operatorname{Re}\left\{\frac{(n+p+1) \frac{D^{n+p+1} F(z)}{D^{n+p} F(z)}-(n+2 p-c)}{(n+p)-(n+2 p-c-1) \frac{D^{n+p-1} F(z)}{D^{n+p} F(z)}}-(p+1)\right\}$

$$
<\frac{(p-\alpha)-2(p(n+p-1)+\alpha)(c+1-\alpha)}{2(n+p)(c+1-\alpha)}
$$

We have to prove that (2.13) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(p+1)\right\}<-\frac{p(n+p-1)+\alpha}{n+p} \tag{2.14}
\end{equation*}
$$

Define $w(z)$ in U by

$$
\begin{align*}
\frac{D^{n+p} F(z)}{D^{n+p-1} F(z)}-(p+1) & \tag{2.15}\\
& =-\left\{\frac{p(n+p-1)+\alpha}{n+p}+\frac{p-\alpha}{n+p} \frac{1-w(z)}{1-w(z)}\right\}
\end{align*}
$$

Clearly $w(z)$ is regular and $w(0)=0$. The equation (2.15) may be written as

$$
\begin{equation*}
\frac{D^{n+p} F(z)}{D^{n+p-1} F(z)}=\frac{(n+p)+(n+3 p-2 \alpha) w(z)}{(n+p)(1+w(z))} \tag{2.16}
\end{equation*}
$$

Differentiating (2.16) logarithmically and simplifying we obtain

$$
\begin{align*}
& \frac{(n+p+1) \frac{D^{n+p+1} F(z)}{D^{n+p} F(z)}-(n+2 p-c)}{(n+p)-(n+2 p-c-1) \frac{D^{n+p-1} F(z)}{D^{n+p} F(z)}-(p+1)} \tag{2.17}\\
& \quad=-\left\{\frac{p(n+p-1)+\alpha}{n+p}+\frac{(p-\alpha)}{(n+p)} \frac{1-w(z)}{1+w(z)}\right\} \\
& \quad+\frac{2(p-a) z w^{\prime}(z)}{(n+p)(1+w(z))[(c+1-p)+(p-2 \alpha+c+1) w(z)]}
\end{align*}
$$

The remaining part of the proof is similar to that of Theorem 1.
Putting $p=c=1$ and $n=\alpha=0$ in Theorem 2, we obtain the following result obtained by Goel and Sohi [3] and Ganigi and Uralegaddi[2].

Corollary 1. If $f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k}$ and satisfies the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\frac{1}{4}
$$

then

$$
F(z)=\frac{1}{z^{2}} \int_{o}^{z} t f(t) d t
$$

belongs to Σ^{*} (the class of meromorphically starlike functions).
Remark 1. Corollary 1 extends a result of Bajpai [1].
Theorem 3. If $f(z) \in M_{n+p-1}(\alpha)$, then

$$
F(z)=\frac{n+p}{z^{n+2 p}} \int_{0}^{z} t^{n+2 p-1} f(t) d t
$$

belongs to $M_{n+p}(\alpha)$.
Proof. For

$$
F(z)=\frac{c-p+1}{z^{c+1}} \int_{o}^{z} t^{c} f(t) d t,
$$

we have
$(c-p+1) D^{n+p-1} f(z)=(n+p) D^{n+p} F(z)-(n+2 p-c-1) D^{n+p-1} F(z)$ and

$$
(c-p+1) D^{n+p} f(z)=(n+p+1) D^{n+p+1} F(z)-(n+2 p-c) D^{n+p} F(z) .
$$

Taking $c=n+2 p-1$ in the above relations we obtain

$$
\frac{(n+p+1) D^{n+p+1} F(z)-D^{n+p} F(z)}{(n+p) D^{n+p} F(z)}=\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)},
$$

which reduces to

$$
\frac{(n+p+1) D^{n+p+1} F(z)}{(n+p) D^{n+p} F(z)}-\frac{1}{n+p}=\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}
$$

Thus

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{(n+p+1) D^{n+p+1} F(z)}{(n+p) D^{n+p} F(z)}-\frac{1}{n+p}-(p+1)\right\} \\
& \quad=\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(p+1)\right\}<-\frac{p(n+p-1)+\alpha}{n+p},
\end{aligned}
$$

from which it follows that

$$
\operatorname{Re}\left\{\frac{D^{n+p+1} F(z)}{D^{n+p} F(z)}-(p+1)\right\}<-\frac{p(n+p)+\alpha}{n+p+1}
$$

This completes the proof of Theorem 3.
Remark 2. Taking $p=1$ and $\alpha=0$ in the above theorems, we get the results obtained by Ganigi and Uralegaddi [2].

References

[1] S. K. Bajpai: A note on a class of meromorphic univalent functions. Rev. Roum. Math. Pures Appl., 22, 295-297 (1977).
[2] M. D. Ganigi and B. A. Uralegaddi: New criteria for meromorphic univalent functions. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.), 33 (81), no. 1, 9-13 (1989).
[3] R. M. Goel and N. S. Sohi: On a class of meromorphic functions. Glas. Mat., 17, 19-28 (1981).
[4] I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., (2) 3, 469-474 (1971).
[5] V. Kumar and S. L. Shukla: Certain integrals for classes of p-valent meromorphic functions. Bull. Austral. Math. Soc., 25, 85-97 (1982).
[6] St. Ruscheweyh : New criteria for univalent functions. Proc. Amer. Math. Soc., 49, 109-115 (1975).
[7] B. A. Uralegaddi and M. D. Ganigi: Subclasses of p-valent meromorphic starlike functions. J. Math. Res. Exposition, 9, no. 3, 397-401 (1989).

