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We say that a Galois extension L/K of a number field K with Galois
group G has a relative normal integral basis (RNIB, for short) when the inte-
ger ring OL of L is free over the group ring OK[G]. Let p be a prime number
and assume that K contains a primitive p-th root of unity. In [3], Childs
proved that an unramified cyclic extension L/K of degree p has an RNIB if
and only if L is obtained by adjoining to K a p-th root of a unit of K satis-
fying a certain congruence. Let (K) be the subgroup of K/K consisting
of classes [or] (or K ) for which K(cr1/) is unramified over K, and
At(K) be the subgroup of (K) consisting of classes [o] ( (K))for
which the unramified cyclic extension K(aI/)/K has an RNIB. Using the
above result and tools of Iwasawa theory, we shall describe, in terms of pow-
er series attached to p-adic L-functions, the Galois module structure of the
quotient (K)/Ar(K) when the base field K runs over all layers of the cyc-
lotomic Z-extension of a certain imaginary abelian field (Theorem). As a
corollary, we give a necessary and sufficient condition for :(K)
At(K) for such K in terms of an Iwasawa invariant and a certain disting-
uished polynomial. Though there are several results to the effect that rela-
tive Galois extensions have no RNIB (e.g. FrOhlich[7, Chap. 6, 3],
Cougnard[4], Brinkhuis[1]), there seems to be few results in the other detec-
tion. An immediate consequence of the Corollary is that any unramified cyc-
lic extension of degree p over K as above has an RNIB if the base field K is
a "sufficiently" high layer. This paper is an announcement of the results
generalizing those of our paper [10]. The details will appear elsewhere.

Let p be a fixed odd prime number and k be an imaginary abelian field
satisfying the following three conditions.

(C1) k contains a primitive p-th root of unity.
(C2) pA[k" Q].
(C3) There is only one prime ideal of k over p.

Typical examples of such k are (1) k Q(), and (2)p 3, k Q(v/- 3,
-d) where d is a rational integer with d --- 2 (mod. 3). Let k/k be the cyc-
lotomic Z-extension and kn be its n-th layer (n 0). Put A Gal(k/Q)
and /" Gal(k/k). We write, for brevity, n (kn) and An = Ar(kn).
The Galois groups A and / act on these groups naturally, Let be an irre-
ducible character of A over Q. We call such a Q-character. We fix an
irreducible component of over an algebraic closure of Q, which we
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also regard as a primitive Dirichlet character. We say that is even when
the Dirichlet character is even. Let A be the subring of f2p generated over

Zp by the image of . Let e be the idempotent of the group ring

Zp[Zl] corresponding to gr. For a Zp [A] -module M, we write M(g0 ecM.
We identify eCZ[A] with A by e () ( A). Let r be the topological
generator of/ such that r l+q0 for all pa-th roots of unity and for all
a(--> 1), where q0 is the least common multiple of p and the conductor of .
We identify, as usual, the completed group ring A[[/]] with the power
series ring A[[t]] by 7"+--’ 1 + t. Thus, the group (n/2Vn)(O is a module
over A[[t]]. When is nontrivial and even, Iwasawa[12] has constructed a

power series ge(t) with coefficients in A such that
g((1 + qo) -s- 1) L(s, ).

Here, L(s, ) is the p-adic L-function associated to the Dirichlet character. Define the ideal Xn of A[[t]] by

X. {g A[[t]] P’g (g,
Here, w. (1 + t)" 1. Let An(n >- 1) be the ideal of A[[t]] generated by
p", p’-l-" t(0 <-- j <-- n 1), and Ao A[[t]]. Define the A[[t]]-module Y
by

Y. X./(X. C A., g,, oo).
Theorem. Let k be an imaginary abelian field satisfying (C1), (C2), (C3)

such that p does not divide the class number h(k+) of its maximal real .subfield
k+. Let be a nontrivial even Q-character of A, and be its irreducible compo-
nent over f2. Then. there exists an isomorphism from (2/A/.) () to Y. over
A [t] such that the following diagram is commutative"

en+l P-
pn.j){[a].+) (.+/aV.+)(g0 Y.+ [(Z (1 + t) .g].+

j--O

{ [61f] n) (n /J’n) (f)
n y. [g] .-

Here, {[a]m} denotes the class in rn/Jm represented by an element [a] m of
g(a k), and [g] is the class in Ym represented by g( Xm).

Remark 1. (1) Since p X h(k+), we see from (C2) and (C3) that p A"
h(k+) for all n _> 0 by using a theorem of Iwasawa[ll]. Therefore, it follows
from the Spiegelungsatz that g {1}.
(2) Let gr

0 be the trivial character of A. Then, by the Stickelberger theorem
for Q(pp.) and the Spiegelungsatz, we obtain g.(gro) {1}. For a nontrivial
even Q-eharacter gr, the Galois module structure of g.(g0 is described in
terms of power series ge by the Iwasawa main conjecture (proved by

Mazur-Wiles[ 14 ]).
By the theorem of Ferrero-Washington[6] on Iwasawa p-invariants and

the Weierstrass preparation theorem, the power series ge is the product of a
distinguished polynomial he(t) of Air] and a unit of A[[t]]. Put , ’e
deg he. This does not depend on the choice of an irreducible component of. When 2e 0, it follows from the Iwasawa main conjecture that ,(g0

t{1}. Put He he Some computation on the modules Yn(n -> 0) yields
the following
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Corollary. Let k be an imaginary abelian field satisfying the assumptions

of Theorem, and let be a nontrivial even Qp-character of A such that, , 1 for its irreducible component over . Then, the following holds:
(a) Whenpn-l(p- 1) _> 2 (n >_ 1), .(/r)
(b) When pn-(p 1) < 2 < pn (n 2), n(g9 W.() if and only if

t"-’Ho p A..
(c) When p" <-- , (n >-- 0), n(O W.() if and only if Ho p’A..
Remark 2. Since he is a distinguished polynomial, H P’Ao. So,

W0 W0 for any k satisfying the assumptions of Theorem. But, it can be
proved more directly using the result of Childs and the Spiegelungsatz and
more or less known that W(k)= W(k)for any CM-field k satisfying
(C1), p X h(k+) and such that k is unramified over Q(tt) at the primes over p.

Example 1./Remark 3. Let k Q(/2). Then, we see, from Corollary,
that W.=W. for all n if pXh(Q(cos(2r/p))) and 2_<p-- 1 for each
nontrivial even character of A. By computations on irregular primes and
cyclotomic invariants (Ernvall-Metsfinkyl[5], Buhler-Crandall-SomlSolski[2]),
these assumptions are satisfied for p < 10. In [15], Taylor deals with the
case n 0 without the assumption p X h(Q(cos(2rc/p))) and obtains a re-
sult which contains ours in this case.

Example 2. Letp=3 and k= Q(v/-3.,v/) with d-= 2 (mod. 3,). Let
b be the unique nontrivial even character of A. Assume that/ / --> 1 and
3 X h(k+). Then, by the Iwasawa main conjecture (proved by
Mazur-Wiles[14]), we see that the dimension of W. over Z/3Z is
when 3" -> / (resp. 3" -</). As an example, we have calculated, using our
results, the dimension d. of ./aV. over Z/3Z for 2 -< 8. Write ho,-

tj=o3" aj with a Z3. We always have do 0.
<_2d.= 0( 1).

3 <__< 6and31ao:=>d. =0(n_> 1).
3-<-< 6and3#’ao=>dl= 1, d.- 0 (n_>2).

7 and 31ao==> d. 0(n _> 1).
7and3ao=:>dl---- d2= 1, d.=0 (n>_3).
8 and 3[ao, 31a1==> d. 0 (n >_ 1).

2 8 and31ao, 3a,=:>d= 0, d2- 1, dn= 0(n 3).
2 8 and 3ao=:>d- 1, d-- 2, d.=0 (n >_ 3).

When 7, 8 and 3 ao, there exists an unramified cyclic extension L/k
of degree 3 without an RNIB. We see, by using Theorem, that Lk2/ke does
have an RNIB for any such L. We have picked up the following values of d
from the table of Fukuda[8] on -invariants of imaginary quadratic fields,
using the computer programs, written by Yamamura, to calculate class num-
bers of real and imaginary quadratic fields. They satisfy the assumptions
d 2(mod. 3) and 3 2’ h(k+).

3’a

2=1 =2 2=3 =4 =5 ,=6 2=7
d 173 1207 878 1541 10222 26761 95569

d 31 62 281 214 4006 5173 14714
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Remark 4. The problem we have dealt with is a special case of the fol-
lowing one. For a number field K, a finite set S of prime ideals of K and a fi-
nite abelian group G, let H be the group of isomorphism classes of Galois ex-
tensions over the S-integer ring of K with group G, and N be the subgroup
consisting of classes of those with normal basis. One may ask "What is the
group N or H/N?" Basic cases to be considered are (1) G z/paz and S
is the set of primes over p, and (2) G z/paz and S is empty. Though we
have a good understanding for the former case (Greither[9], Kersten-
Michaliek[13]), we have, so far, few results for the latter case, which in-
clude results of Childs and Taylor mentioned previously. We also refer to [1]
which studies the action of complex conjugation on N when K is a CM-field
or a totally real number field, S is empty and G is any abelian group.
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