88. Euler Characteristics of Groups and Orbit Spaces of Free G-complexes

By Toshiyuki AKITA

Department of Mathematics, Osaka Unisersity (Communicated by Heisuke HIRONAKA, M. J. A., Dec. 13, 1993)

Abstract: Let Γ be a group of finite homological type, X a finite dimensional, free Γ -complex such that $H_*(X, \mathbb{Z})$ is finitely generated. We proved that $H_*(X/\Gamma, \mathbb{Z})$ is finitely generated, and $\chi(X/\Gamma) = \chi(\Gamma) \cdot \chi(X)$, where $\chi(\Gamma)$ is the Euler characteristic of a group Γ .

Key words: Topological transformation groups; Euler characteristics of groups.

Let Γ be a discrete group. By a Γ -complex we will mean a CW-complex X together with an action of Γ on X which permutes the cells. A Γ -complex X is said to be *free* if the action of Γ freely permutes the cell of X. This note attempts to provide a formula concerning the Euler characteristics of a finite dimensional, free Γ -complex X and of the orbit space X/Γ . Such a formula is well-known for finite groups [3, p. 245]:

Theorem 1. Let G be a finite group, X a finite dimensional free G-complex such that $H_*(X, \mathbb{Z})$ is finitely generated. Then $H_*(X/G, \mathbb{Z})$ is finitely generated, and

$$\chi(X) = |G| \cdot \chi(X/G).$$

On the other hand, let Γ be a fundamental group of a finite aspherical complex $B\Gamma$. Then we see that $H_*(X/\Gamma, \mathbb{Z})$ is finitely generated, and $\chi(X/\Gamma)$. $= \chi(B\Gamma) \cdot \chi(X)$. This follows from the product formula of Euler characteristics for fibrations applied to the Borel construction $X \to E\Gamma \times_{\Gamma} X \to$ $B\Gamma$, where $E\Gamma$ is the universal cover of $B\Gamma$, and from the fact that $H_*(E\Gamma \times_{\Gamma} X, \mathbb{Z}) \cong H_*(X/\Gamma, \mathbb{Z})$. We will unify and extend these formulae by means of the Euler characteristics of groups.

The Euler characteristics of abstract groups has been studied by a number of authors under different conditions. We employ the one developed in Brown's book [3]. Recall that Γ is a group of finite homological type if (i) Γ is a group of finite virtual cohomological dimension (written vcd $\Gamma < \infty$) and (ii) for any $\mathbb{Z}\Gamma$ -module M which is finitely generated as a \mathbb{Z} -module, $H_n(\Gamma, M)$ is finitely generated for all n. A group Γ is of finite homological type if and only if a subgroup of finite index is.

Given a group Γ of finite homological type, the *Euler characteristic* $\chi(\Gamma)$ of Γ is defined. Namely, when Γ is torsion-free, set

$$\chi(\Gamma) = \sum_{i} (-1)^{i} \operatorname{rank}_{\mathbf{Z}} H_{i}(\Gamma, \mathbf{Z}).$$

When Γ has torsion, set

Τ. Ακιτά

$$\chi(\Gamma) = \frac{1}{(\Gamma:\Gamma')} \cdot \chi(\Gamma') \in \mathbf{Q},$$

where Γ' is a torsion-free subgroup of finite index, and $(\Gamma : \Gamma')$ is the index of Γ' in Γ . $\chi(\Gamma)$ is independent of the choice of Γ' . For more details of groups of finite homological type and Euler characteristics of them, the reader will refer Chapter IX of [3] as well as [1] and [2]. Now we will state our result:

Theorem 2. Let Γ be a group of finite homological type, X a finite dimensional free Γ -complex such that $H_*(X, \mathbb{Z})$ is finitely generated. Then $H_*(X/\Gamma, \mathbb{Z})$ is finitely generated, and

$$\chi(X/\Gamma) = \chi(\Gamma) \cdot \chi(X).$$

The proof will be done by the use of the Cartan-Leray spectral sequence and Theorem 1. Observe that Theorem 1 is a particular case of Theorem 2. For if G is a finite group, then $\chi(G) = 1/|G|$. Or if Γ is a fundamental group of a finite aspherical complex $B\Gamma$, then $\chi(B\Gamma) = \chi(\Gamma)$. Hence Theorem 2 unifies those two cases mentioned above. And Theorem 2 is new if Γ is an infinite group of finite homological type with torsion. Arithmetic groups provide a large number of examples of such groups (cf. [4]).

Proof of Theorem 2. Assume first that Γ is torsion-free. Consider the Cartan-Leray spectral sequence

 $E_{pq}^{2} = H_{p}(\Gamma, H_{q}(X, \mathbf{Z})) \Longrightarrow H_{p+q}(X/\Gamma, \mathbf{Z}).$

For each p and q, E_{pq}^2 -term is finitely generated, since $H_q(X, \mathbf{Z})$ is finitely generated and Γ is of finite homological type. And $E_{pq}^2 = 0$ whenever p + q $> \dim X + \operatorname{cd} \Gamma$, where $\operatorname{cd} \Gamma$ denotes the cohomological dimension of Γ . Hence $H_*(X/\Gamma, \mathbf{Z})$ is finitely generated. When Γ has torsion, choose a torsion-free normal subgroup Γ' of finite index. Then X/Γ' is a finite dimensional, free Γ/Γ' -complex, and the orbit space $(X/\Gamma')/(\Gamma/\Gamma')$ is homeomorphic to X/Γ . Now Theorem 1 proves that $H_*(X/\Gamma, \mathbf{Z})$ is finitely generated, since Γ/Γ' is a finite group and $H_*(X/\Gamma', \mathbf{Z})$ is finitely generated. Before showing the rest of Theorem 2, we will prove a lemma.

Lemma. Under the hypothesis of Theorem 2, there exists a torsion-free, normal subgroup Γ_0 of finite index such that Γ_0 acts on $H_*(X, \mathbb{Z}/2)$ trivially.

Proof. Choose a torsion-free subgroup Γ' of finite index. The action of Γ' on $H_*(X, \mathbb{Z}/2)$ yields a group homomorphism $\phi: \Gamma' \to \operatorname{Aut}(H_*(X, \mathbb{Z}/2))$, where $\operatorname{Aut}(-)$ is a group of automorphisms of a graded $\mathbb{Z}/2$ -vector space. Obviously a subgroup ker ϕ is torsion-free and acts on $H_*(X, \mathbb{Z}/2)$ trivially. And ker ϕ is of finite index in Γ' since $\operatorname{Aut}(H_*(X, \mathbb{Z}/2))$ is finite. In general, ker ϕ is not normal in Γ . However, since $(\Gamma: \ker \phi) < \infty$, there is a subgroup Γ_0 of finite index in ker ϕ such that Γ_0 is normal in Γ , which is a required Γ_0 .

Now suppose Γ_0 is a subgroup of Γ as in Lemma. Consider the Cartan-Leray spectral sequence with coefficients in $\mathbb{Z}/2$:

 $E_{pq}^{2} = H_{p}(\Gamma_{0}, H_{q}(X, \mathbb{Z}/2)) \Longrightarrow H_{p+q}(X/\Gamma_{0}, \mathbb{Z}/2).$

Since Γ_0 acts on $H_*(X, \mathbb{Z}/2)$ trivially, each E_{pq}^2 -term splits into a tensor product as $E_{pq}^2 \cong H_p(\Gamma_0, \mathbb{Z}/2) \otimes_{\mathbb{Z}/2} H_q(X, \mathbb{Z}/2)$. Using this isomorphism

390

to calculate $\chi(X/\Gamma_0)$, we obtain $\chi(X/\Gamma_0) = \chi(\Gamma_0) \cdot \chi(X)$. On the other hand, applying Theorem 1 to a finite dimensional, free Γ/Γ_0 -complex X/Γ_0 , we obtain

 $\chi(X/\Gamma_0) = |\Gamma/\Gamma_0| \cdot \chi((X/\Gamma_0)/(\Gamma/\Gamma_0)) = (\Gamma:\Gamma_0) \cdot \chi(X/\Gamma).$ Combining these equalities together with the definition of $\chi(\Gamma)$, the proof is done.

Remark. In general, $\chi(\Gamma)$ is not an integer, however, $\chi(\Gamma) \cdot \chi(X)$ is. Under the assumption of Theorem 2, it follows from Theorem 1 that |G| divides $\chi(X)$ for any finite subgroup G of Γ . Consequently, the least common multiple *m* of the orders of finite subgroups of Γ must divide $\chi(X)$. But $m \cdot \chi(\Gamma)$ is an integer [3, p. 257].

References

- K. S. Brown: Euler characteristics of discrete groups and G-spaces. Invent. Math., 27, 229-264 (1974).
- [2] —: Groups of virtually finite dimension. Homological Group Theory (ed. C. T. C. Wall). London Math. Soc. Lecture Notes, vol. 36, Cambridge University Press, Cambridge, pp. 27-70 (1979).
- [3] ----: Cohomology of Groups. Springer-Verlag, New York (1982).
- [4] J.-P. Serre: Arithmetic groups. Homological Group Theory (ed. C. T. C. Wall). London Math. Soc. Lecture Notes, vol. 36, Cambridge University Press, Cambridge, pp. 105-136 (1979).