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Abstract: Let /" be a group of finite homological type, X a finite

dimensional, free /’-complex such that H.(X, Z) is finitely generated. We
proved that H,(X//’, Z)is finitely generated, and x(X//’)-X(1-’)"
2: (X), where Z (/’) is the Euler characteristic of a group
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of groups.

Let F be a discrete group. By a F-complex we will mean a CW-complex X
together with an action of F on X which permutes the cells. A F-complex X
is said to be free if the action of /" freely permutes the cell of
X. This note attempts to provide a formula concerning the Euler characteris-
tics of a finite dimensional, free F-complex X and of the orbit space X/F.

Such a formula is well-known for finite groups [3, p. 245]"
Theorem 1. Let G be a finite group, X a finite dimensional free G-complex

such that H,(X Z) is finitely generated. Then H, (X/ G Z) is finitely gener-
ated, and

On the other hand, let F be a fundamental group of a finite aspherical com-
plex BF. Then we see that H.(X/F, Z) is finitely generated, and X (X/1-)

2: (BF) 2: (X). This follows from the product formula of Euler character-
istics for fibrations applied to the Bore1 construction X---* EF r x---
BF, where EF is the universal cover of BF, and from the act that

H.(EF r X, Z) H,(XZF, Z). We will unify and extend these formulae
by means of the Euler characteristics of groups.

The Euler characteristics of abstract groups has been studied by a num-
ber of authors under different conditions. We employ the one developed in
Brown’s book [3]. Recall that/" is a group of finite homological type if (i) F is a

group of finite virtual cohomological dimension (written vcd/" oo) and (ii)
for any ZF-module M which is finitely generated as a Z-module, H(F, JVI)
is finitely generated for all n. A group / is of finite homological type if and
only if a subgroup of finite index is.

Given a group F of finite homological type, the Euler characteristic

2: (F) of F is defined. Namely, when F is torsion-free, set

: (/3 (-- 1) rankz H(F, Z).

When F has torsion, set
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1
z (F) (V. V’) Z (V’) e ,

where 17’ is a torsion-free subgroup of finite index, and (F" F’) is the index
of F’ in F. Z(F)is indepedent of the choice of F’. For more details of
groups of finite homological type and Euler characteristics of them, the read-
er will refer Chapter IX of [3] as well as [1] and [2]. Now we will state our
result"

Theorem 2. Let I be a group offinite homological type, X a finite dimension-
al free I-complex such that H,(X, Z) is finitely generated. Then H,(X/F, Z)
is finitely generated, and

; (X/F) Z (F) Z (X).
The proof will be done by the use of the Cartan-Leray spectral sequence and
Theorem 1. Observe that Theorem 1 is a particular case of Theorem 2. For
if G is a finite group, then x(G) 1/[ G [. Or if/" is a fundamental group
of a finite aspherical complex BF, then X (BY’) Z (F). Hence Theorem 2
unifies those two cases mentioned above. And Theorem 2 is new if F is an
infinite group of finite homological type with torsion. Arithmetic groups pro-
vide a large number of examples of such groups (cf. [4]).

Proof of Theorem 2. Assume first that I is torsion-free. Consider the
Cartan-Leray spectral sequence

E H(I’, H(X, Z)) H+(X/F, Z).
For each p and q, E-term is finitely generated, since H(X, Z) is finitely
generated and / is of finite homological type. And E 0 whenever p-I- q

dim X + cd/’, where cdF denotes the cohomological dimension of F.
Hence H.(X/F, Z)is finitely generated. When F has torsion, choose a
torsion-free normal subgroup F’ of finite index. Then X/F" is a finite
dimensional, free F/F’-complex, and the orbit space (X/F’)/(F/F’)is
homeomorphic to X/F. Now Theorem 1 proves that H.(X/F, Z) is finitely
generated, since F/F’ is a finite group and H.(X/F’, Z) is finitely gener-
ated. Before showing the rest of Theorem 2, we will prove a 1emma.

Lemma. Under the hypothesis of Theorem 2, there exists a torsion-free,
normal subgroup Fo offinite index such that Fo acts on H, (X, Z/2) trivially.

Proof Choose a torsion-free subgroup /" of finite index. The action of
/" on H,(X, Z/2) yields a group homomorphism q" F’--- Aut(H,(X, Z/2)),
where Aut(--) is a group of automorphisms of a graded Z/2-vector space.
Obviously a subgroup kerq is torsion-free and acts on H,(X, Z/2)
trivially. And ker is of finite index in .N’ since Aut(H,(X, Z/2)) is fi-
nite. In general, ker q is not normal in F. However, since (F" ker b) < oo,
there is a subgroup /0 of finite index in ker q such that F0 is normal in F,
which is a required Fo.

Now suppose Fo is a subgroup of F as in Lemma. Consider the Cartan-
Leray spectral sequence with coefficients in Z/2"

E- H(Fo, H(X, Z/2)) H+(X/ro, Z/2).

Since F acts on H.(X, Z /2) trivially, each Eq-term splits into a tensor
product as Eq H(Y’o, Z/2) (z/H(X, Z/2). Using this isomorphism



No. 10] Euler Characteristics of Groups and Orbit Spaces of Free G-complexes 391

to calculate z(X/I"o), we obtain z(X/Fo) --z(Fo) z(X). On the other
hand, applying Theorem 1 to a finite dimensional, free F/Fo-complex X/Fo,
we obtain

x (X/Po) F/F0[ x ((X/Fo)/(F/Fo)) (1 Fo) X (X/F).
Combining these equalities together with the definition of X (17), the proof is
done.

Remark. In general, 2: (F) is not an integer, however, X (F) ) (X) is:
Under the assumption of Theorem 2, it follows from Theorem 1 that IG]
divides z(X) for any finite subgroup G of F. Consequently, the least com-
mon multiple m of the orders of finite subgroups of F must divide z(X). But
m’x(F) is an integer [3, p. 257].

References

[1] K. S. Brown: Euler characteristics of discrete groups and G-spaces. Invent.
Math., 27, 229-264 (1974).

[2] : Groups of virtually finite dimension. Homological Group Theory (ed. C. T.
C. Wall). London Math. Soc. Lecture Notes, vol. 36, Cambridge University Press,
Cambridge, pp. 27-70 (1979).

3 Cohomology of Groups. Springer-Verlag, New York (1982).
[4] J.-P. Serre: Arithmetic groups. Homological Group Theory (ed. C. T. C. Wall).

London Math. Soc. Lecture Notes, vol. 36, Cambridge University Press, Cam-
bridge, pp. 105-136 (1979).


