80. The Schur Indices of the Irreducible Characters of $G_2(2^n)$

By Hikoe ENOMOTO^{*)} and Zyozyu OHMORI^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1993)

Introduction. Let $G_2(q)$ be the finite Chevalley group of type (G_2) over a finite field F_q with q elements. It was shown in [3] that the following theorem holds for odd q:

Theorem. The Schur index $m_Q(\chi)$ of any complex irreducible character χ of $G_2(q)$ with respect to Q is equal to 1.

In this paper, we shall prove that the theorem holds also for $q = 2^n$, as was announced in [3]. The complex irreducible characters of $G_2(2^n)$ have been calculated by the first named author and H. Yamada in [2]. In the following, $G_2(2^n)$ will be denoted simply by G.

Proof of the theorem for $q = 2^n$. For the notation of the conjugacy classes of $G = G_2(2^n)$, the characters of G, or of subgroups of G, etc., we follow those in [2].

Let *B* be the Borel subgroup of *G* and *U* its unipotent part. We first describe the character-values of the Gelfand-Graev character Γ_G of *G* and the induced character $1_U^G = \operatorname{Ind}_U^G(1_U)$; Γ_G is the character of *G* induced by the linear character of *U* given by $x_a(t_1)x_b(t_2)x_{a+b}(t_3)\cdots x_{3a+2b}(t_6) \rightarrow \phi(t_1)\phi(t_2)$, where ϕ is a previously fixed non-trivial additive character of F_{2^n} . There are eight unipotent classes in $G: A_0, A_1, A_2, A_{31}, A_{32}, A_4, A_{51}$ and A_{52} ; representatives of these classes are respectively: h(1, 1, 1) = e, $x_{3a+2b}(1), x_{2a+b}(1), x_{a+b}(1)x_{2a+b}(1), x_{a+b}(1)x_{2a+b}(1)x_{3a+b}(\xi), x_b(1)x_{2a+b}(1)x_{3a+b}(\xi)$. Then we have the following table:

	Γ_{G}	1_U^G
A_{0}	$(q^2-1)(q^6-1)$	$(q^2-1)(q^6-1)$
A_1	$-q^{2}+1$	$(q^2-1)(q^3-1)$
A_2	$-q^{2}+1$	$(q^2-1)(q-1)(2q+1)$
A_{31}	$-q^{2}+1$	$(q-1)^2(4q+1)$
A_{32}	$-q^{2}+1$	$(q-1)^2(2q+1)$
A_4	$-q^{2}+1$	$(q^2-1)(q-1)$
A_{51}	1	$(q-1)^2$
A_{52}	1	$(q-1)^2$

Since ϕ takes values in Q, Γ_{G} is realizable in Q. Also 1_{U}^{G} is clearly realizable in Q.

^{*)} Department of Mathematics, Keio University.

^(*) Iwamizawa College, Hokkaido University of Education.

Now let us recall a part of Schur's theorem:

Lemma (see, e.g., [1], 11.4). Let μ be an ordinary character of a finite group H which is realizable in a field K of characteristic 0. Then, for any irreducible character χ of H, the Schur index $m_K(\chi)$ of χ with respect to K divides the inner product $\langle \chi, \mu \rangle_H$.

We now prove the theorem in Introduction. By using [2] and the information about the values of Γ_G above, we find that the irreducible constituents of Γ_G are precisely those irreducible characters of G of degree, as a polynomial in $q = 2^n$, six, and that Γ_G is multiplicity-free. Then, as Γ_G is realizable in Q, by the lemma, we find that $m_Q(\chi) = 1$ for any irreducible character χ of G such that $\chi(1)$ is of degree six. Next we have $\langle \theta_i, 1_U^G \rangle_G = 1$ for i = 3, 4, hence we have $m_Q(\theta_3) = m_Q(\theta_4) = 1$.

Let $\theta_4(\pm 1, \pm 1)$ be four irreducible characters of *B* constructed in [2], p. 334; in view of [2], p. 333, we find that the characters $\theta_4(\pm 1, \pm 1)$ are realizable in *Q*; hence the $\theta_4(\pm 1, \pm 1)^G$ are realizable in *Q*. We have: $\langle \theta_1 | B, \theta_4(1, 1) \rangle_B = \langle \theta'_1 | B, \theta_4(-1, 1) \rangle_B = \langle \theta_2 | B, \theta_4(1, -1) \rangle_B = \langle \theta'_2 | B, \theta_4(-1, -1) \rangle_B = 1$. To show these equalities, we use the following correspondence between classes of *B* and those of *G*:

Classes in B	A_{0}	A_1	A_2	A_3	A_{41}	A_{42}	A_{43}	A_{51}	A_5	$_{2}(0)$	
Classes in G	A_{0}	A_1	A_1	A_2	A_2	$A_{\scriptscriptstyle 31}$	$A_{\scriptscriptstyle 32}$	A_1	A_3	$_{2}(\varepsilon =$	- 1)
Classes in B	$A_{52}($	(0)		$A_{52}($	(<i>i</i>) (<i>i</i> ≠	± 0)	$A_{53}(0$) A_{53}	(<i>t</i>) ($t \in \Omega$	<i>P</i> ₁)
Classes in G	$A_{31}($	ε =	1)	A_4			A_2	$A_{\scriptscriptstyle 32}$			
Classes in B	$A_{53}($	(<i>t</i>) (<i>t</i>	$\in \Omega$) ₂)	$A_{53}(t)$	$(t \in$	(Ω_3)	4 ₆₁ .	A_{62}	A_{63}	
Classes in G	$A_{\scriptscriptstyle 31}$				A_4		_	4 ₂	A_{31}	$A_{\scriptscriptstyle 32}$	
Classes in B	B_{71}	A_{72}	2						(- (_	$1)^n$
Classes in G	A_{51}	A_{52}	2						(8 -	- (-	1)).

Hence, by the Frobenius-reciprocity and the lemma above, we have $m_{Q}(\theta_1) = m_{Q}(\theta_1') = m_{Q}(\theta_2) = m_{Q}(\theta_2') = 1.$

The irreducible characters of G except for two characters $\theta_9(1)$, $\theta_9(2)$ are real, so that, by the Brauer-Speiser theorem (see [4], p. 9), all the irreducible characters of G except for $\theta_9(1)$, $\theta_9(2)$ have the Schur indices at most 2 over Q. Thus any irreducible character of G of odd degree has the index 1 over Q. The remaining characters are θ_8 , $\theta_9(1)$, $\theta_9(2)$.

Let θ_2 be the irreducible character of *B* constructed in [2], p. 332; θ_2 is realizable in *Q*. We have $\langle \theta_8 | B, \theta_2 \rangle_B = q + \varepsilon \neq 0 \pmod{2}$, hence we have $m_Q(\theta_8) \neq 0 \pmod{2}$ and $m_Q(\theta_8) = 1$.

Finally, let $\chi = \theta_9(1)$ or $\theta_9(2)$. Let ζ_3 be a primitive cubic root of unity. Then we have $Q(\chi) = Q(\zeta_3)$, where $Q(\chi)$ is the field generated over Q by the values of χ . According to Proposition 1 of [3], for any non-regular unipotent element u of G, $\chi(u)$ is a rational integer and $m_Q(\chi) | \chi(u)$. We find from Table IV-2 of [2], p. 366, that $\chi(A_{31}) = \frac{1}{3}q(\varepsilon q - 1)$ and $\chi(A_4) = \frac{1}{3}q(\varepsilon q + 2)$. Hence $m_Q(\chi) | q (= 2^n)$. We show that $m_Q(\chi) \neq 0 \pmod{2}$. Let t be an element of order 3 whose class is called B_0 in [2]. Let μ be a non-trivial linear character of $\langle t \rangle$. Then we have

$$\langle \chi | \langle t \rangle, \mu \rangle_{\langle t \rangle} = \frac{1}{9} (q^2 - 1) (q^3 - \varepsilon) \neq 0 \pmod{2}.$$

And $Q(\chi) = Q(\mu) = Q(\zeta_3)$. Thus we have $m_Q(\chi) \neq 0 \pmod{2}$ and $m_Q(\chi) = 1$. This completes the proof of our theorem.

References

- [1] W. Feit: Characters of Finite Groups. Benjamin, New York (1967).
- [2] E. Enomoto and H. Yamada: The characters of $G_2(2^n)$. Japan. J. Math., 12, 325-377 (1986).
- [3] Z. Ohmori: Schur indices of the irreducible characters of some finite Chevalley groups of rank 2. I. Tokyo J. Math., 8, 133-150 (1985).
- [4] T. Yamada: The Schur Subgroup of the Brauer Group. Lect. Notes in Math., vol. 397, Springer, Berlin, Heidelberg, New York (1974).