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1. Introduction. In this note, we investigate the relation between mero-
morphic solutions of a Riccati equation
(1.1) u’ + u + A(z) = 0
and meromorphic solutions of some second order differential equation
(1.2) q" + 3q’p + q3 + 4A(z)q + 2A’(z) 0,
where A(z) is a meromorphic function.

For any solutions ul(z), u2(z) of (1.1), p(z):= u(z) + u.(z) satisfies
the equation (1.2). In fact, denoting by (z, q) the left-hand side of (1.2),
we have
(1.3) q)(z, q) 3uxU(z, u2) + 3u2Ux(z, u) + U(z, ul) + U(z, u),
where Ul(z, u) u’ + u + A(z), U(z, u) u + 3u’u + u + A(z)u +

dU(z, u(z))
A’ (z) dz + uU (z, u)

It is easy to see that if u(z) satisfies the equation (1.1), then

Us(z, u(z))= 0, j--1, 2. This means that sum q(z)of solutions u(z),
u2(z) of the equation (1.1) is a solution of the equation (1.2). Conversely, we
get the following theorems:

Theorem 1.1. Suppose that A(z) is an entire function. Then the equation

(1.2) admits a meromorphic solution q(z). Moreover, for any meromorphic solution

q (z) of (1.2), there exist meromorphic solutions u (z) uz (z) of the Riccati equa-
tion (1.1) such that q (z) u (z) + u. (z).

In this note, we use standard notations in the Nevanlinna theory (see, e.g.,

[3], [6], [7]). Let f(z) be a meromorphic function. As usual, m(r, f), N(r, f),
and T(r, f)denote the proximity function, the counting function, and the
characteristic function of f(z), respectively. A function q(r), 0

_
r < oo, is

said ,to be S(r, f) if there is a set E /+ of finite linear measure such that
q(r) o(T(r, f))as r-- oo with r E. We say that meromorphic solu-
tions u(z)and p(z)are admissible solutions (1.1) and (1.2), if T(r, A)=
S(r,, u) and T(r, A) S(r, q), respectively. For some property P, we de-
note by np(r, c f) the number of c-points in z - r that admit the proper-
ty P. The integrated counting function Np(r, c; f) is defined in the usual
fashion. SupposeN(r, c;f) 4= S(r,f) for a c C U {oo}. IfN(r, c;f)
N(r, c; f) S(r, f), then we say that almost all c-points admit the prop-
erty P.

Theorem 1.2. Suppose that the equations (1.1) and (1.2) possess an

admissible solution u(z) and a meromorphic solution q(z), respectively. If
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ul(z) and q(z) share almost all poles, then the function u2(z)"--q(z)-
u (z) is an admissible solution of the equation (1.1).

2. Proofs of Theorems 1.1 and 1.2. Proof of Theorem 1.1. Since A(z) is
an entire function, each pole of a meromorphic solution q(z) is a simple pole
with residue 1 or 2 (see [4, pp. 321-322]). Hence there exists an entire
function f(z)such that (p(z)- f’(z)/f(z). By simple computation, we see
that f(z) satisfies the linear differential equation of third order
(2.1) w" + 4A(z)w’ + 2A’(z)w- O.
We know that a fundamental set of the equation (2.1) is given by {wl, WlW2,
w), where w(z), w(z) are linearly independent solutions of linear differen-
tial equation of second order
(2.2) w" / A(z)w 0
(see e.g., [2, 2-8]). Thus we can write f(z) as

f (z) Cw (z) + Cw (z) w (z) + Cw(z)
(ClW (Z) + C2W (Z) (C3W (2:) -" C4W (Z)

Put (z)": cw(z) 4- cwe(z), e(z) cw(z) 4- c4we(z). Then 2 (z),
22(z) are also solutions of the equation (2.2). Define u(z)"= t’(z)/(z),
ue(z) "--’(z)/ff:e(z). Then u(z), ue (z) satisfy the Riccati equation (1.1).
We immediately obtain q(z) u(z) + u.(z).

The existence of a meromorphic solution q (z) follows from the argu-
ments above and from the existence theorem to the equation (2.2) with an en-
tire coefficient A(z).

Proof of Theorem 1.2. Define f(z) U(z, u2(z)). Then we have U(z,
u(z)) f’(z) + f(z)u2(z). From (1.3),
(2.3) q)(z, q(z)) 3u(z) f(z) + f’(z) + f(z)u(z) O.
Suppose that f(z) 0 in (2.3). Then we may write (2.3) as

f ’(z)
(2.4) 3u(z) 4-u(z) + -f--( =0.

In this proof, for a transcendental meromorphic function g(z), we call zo
an admissible pole of g(z) if zo is a pole of g(z) and neither a pole nor a
zero of A(z). It is easy to see that the admissible solution u(z) of the Riccati
equation (1.1) possesses an admissible pole with residue 1. Let z be an
admissible pole of ul(z). We have that if Zo is a pole off(z), then Zo is a pole
of ue(z). Then from (2.4), we see that either z is a pole of ue(z), or zo is not
a pole of u2(z) but a zero of f(z). First we treat the case when zo is not a
pole of u2(z) but a zero of f(z). It is easy to see that the residue of the Lau-
rent expansion of f’(z)/f(z)at zo is a positive integer. This contradicts
(2.4). Secondly we consider the case when z is a pole of ue(z). It folllows
from (2.4) that zo is a simple pole of ue(z). We denote by R the residue in
the Laurent expansion of ue(z) at zo. Write f(z) in a neighbourhood of zo as

f(z) C (z Zo) + O (z z0) TM asz--Zo, C=/=0, _-2.

By the definition of f(z), we see that p

_
1 if and only if R 1. Using

(2.4), we get
(2.5) 3+R+ = 0.
Hence if R 1, then from (2.5), 4

_
1, which is absurd. Hence, we
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have R 1, which implies that 2. From (2.5), we get R 1. We
have
(2.6) N(r, ul) - N(r, u2) + S(r, ul).
Since u(z) is an admissible solution of the Riccati equation (1.1), we have
re(r, u) S(r, u). From (2.6),
(2.7) T(r, u)

_
N(r, u2) + S(r, ul)

_
T(r, uz) + S(r, Ul).

It follows from (2.7) that a real function (r)that satisfies (r)= S(r,
u) also satisfies (r) S(r, u). Conversely, we assert that
(2.8) T(r, u)

_
T(r, u) + S(r, u).

In fact, let z be an admissible pole of u2(z). Then by our assumption, z is a
pole of u(z) and a pole of q(z) simultaneously. Thus we have
(2.9) N(r, u)

_
N(r, u) + S(r, u).

By means of the theorem on the logarithmic derivative, we have re(r, f’/
f) S(r, f). Recalling Ul(z, u)is a differential polynomial in u2, for a
real function b(r), (r) S(r, f) implies (r) S(r, u). Hence from
(2.4),

(2.0) re(r, u)

_
m(r, u) + m(r, Z__) S(r, u) + S(r, u)= S(r, u).

Therefore, the assertion (2.8) follows from (2.9) and (2.10). Hence in the se-

quel we may write S(r, ul) S(r, uz) and we get
(2.11) T(r, u) T(r, u) + S(r, uz).
As seen in the arguments above, almost all poles of u(z) are simple poles
with residue 1. Write u2(z) in a neighbourhood of such z as

--1
(2.12) u. (z) + O (z z), as z - z,

and we have
f’(z) 2

+O(z-z) aszz,(2. 3) f(z) z z
in a neighbourhood of z0. We define the counting function concerning com-
mon zeros of two meromorphic functions f(z) and g(z). Let n(r, 0;f)g be
the number of common zeros of f(z)and g(z)in Iz[ -r, each counted
according to the multiplicity of the zero of f(z). The counting function
N(r, O, f)g is defined in the usual way. The integrated counting function
N(r, 0;f)e(= N(r, 0;g)) counts distinct common zeros of f(z) and g(z).
We also see from the arguments above that N(r f’/f)’-N(r O’f/f’)

S(r, u2). Define

(2 14) a(z) "= 2u(z) f’(z)
f(z)

Then from (2.12) and (2.13), zx is a regular point of a(z). This implies that
N(r, ) S(r, u). From (2.10) and (2.14), we get m(r, ) S(r, u.).
Hence a(z) is a small function with respect to uz(z). Combining (2.4) and
(2.14), we obtain p(z) (1/3)a(z). We see from our assumption and (2.11)
that it is not possible for p(z) to be a small function with respect to uz(z).
Therefore, we conclude that f(z)----0 otherwise q(z)is a small function
with respect to u.(z). This means that u.(z) satisfies the Riccati equation
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(1.1).
We can find the existence theorem to meromorphic solutions of the

equation (1.1) and the study of the equations (1.2) and (2.1) in, for instance,
[1] [5] [6]. Finally, we give a summarizing diagram below.

w + A (z) w 0 ""=" f" + 4A (z)f + 2A’ (z)f 0

u’+u+A(z) 0 =’’+"’ "+3’+ +4A(z) +2A’(z) =0.

[11

[5]

[71

References

S. B. Bank, G. G. Gundersen, and I. Laine: Meromorphic solutions of the Riccati

differential equation. Ann. Acad. Sci. Fenn. Ser. A Math., 6, 369-398 (1981).
M. Gregu: Third Order Linear Differential Equations. D. Reide, Dordrecht, Bos-
ton, Lancaster, Tokyo (1987).

W. K. Hayman: Meromorphic Functions. Clarendon Press, Oxford (1964).
K. Ishizaki: Admissible solutions of second order differential equations. T6hoku
Math. Jour. Math., 44, 305-325 (1992).
: On the complex oscillation of linear differential equations of third order.
Complex Variables Theory Appl. (to appear).

I. Laine: Nevanlinna Theory and Complex Differential Equations. W. Gruyter,
Berlin, New York (1992).

R. Nevanlinna: Analytic Functions. Springer-Verlag, Berlin, Heidelberg, New
York (1970).


