## 75. Meromorphic Solutions of Some Second Order Differential Equations

By Katsuya ISHIZAKI

Department of Mathematics, Tokyo National College of Technology (Communicated by Kiyosi ITÔ, M. J. A., Oct. 12, 1993)

**1. Introduction.** In this note, we investigate the relation between meromorphic solutions of a Riccati equation

(1.1)  $u' + u^2 + A(z) = 0$ and meromorphic solutions of some second order differential equation (1.2)  $\varphi'' + 3\varphi'\varphi + \varphi^3 + 4A(z)\varphi + 2A'(z) = 0$ , where A(z) is a meromorphic function.

For any solutions  $u_1(z)$ ,  $u_2(z)$  of (1.1),  $\varphi(z) := u_1(z) + u_2(z)$  satisfies the equation (1.2). In fact, denoting by  $\Phi(z, \varphi)$  the left-hand side of (1.2), we have

(1.3)  $\begin{aligned} \Phi(z, \varphi) &= 3u_1 U_1(z, u_2) + 3u_2 U_1(z, u_1) + U_2(z, u_1) + U_2(z, u_2), \\ \text{where } U_1(z, u) &= u' + u^2 + A(z), \ U_2(z, u) &= u'' + 3u'u + u^3 + A(z)u + \\ A'(z) &= \frac{dU_1(z, u(z))}{dz} + uU_1(z, u). \end{aligned}$ 

It is easy to see that if u(z) satisfies the equation (1.1), then  $U_j(z, u(z)) = 0, j = 1, 2$ . This means that sum  $\varphi(z)$  of solutions  $u_1(z)$ ,  $u_2(z)$  of the equation (1.1) is a solution of the equation (1.2). Conversely, we get the following theorems:

**Theorem 1.1.** Suppose that A(z) is an entire function. Then the equation (1.2) admits a meromorphic solution  $\varphi(z)$ . Moreover, for any meromorphic solution  $\varphi(z)$  of (1.2), there exist meromorphic solutions  $u_1(z)$ ,  $u_2(z)$  of the Riccati equation (1.1) such that  $\varphi(z) = u_1(z) + u_2(z)$ .

In this note, we use standard notations in the Nevanlinna theory (see, e.g., [3], [6], [7]). Let f(z) be a meromorphic function. As usual, m(r, f), N(r, f), and T(r, f) denote the proximity function, the counting function, and the characteristic function of f(z), respectively. A function  $\varphi(r)$ ,  $0 \leq r < \infty$ , is said to be S(r, f) if there is a set  $E \subset \mathbf{R}^+$  of finite linear measure such that  $\varphi(r) = o(T(r, f))$  as  $r \to \infty$  with  $r \notin E$ . We say that meromorphic solutions u(z) and  $\varphi(z)$  are admissible solutions (1.1) and (1.2), if T(r, A) = S(r, u) and  $T(r, A) = S(r, \varphi)$ , respectively. For some property P, we denote by  $n_{\rm P}(r, c; f)$  the number of c-points in  $|z| \leq r$  that admit the property P. The integrated counting function  $N_{\rm P}(r, c; f)$  is defined in the usual fashion. Suppose  $N(r, c; f) \neq S(r, f)$  for a  $c \in C \cup \{\infty\}$ . If  $N(r, c; f) - N_{\rm P}(r, c; f) = S(r, f)$ , then we say that almost all c-points admit the property P.

**Theorem 1.2.** Suppose that the equations (1.1) and (1.2) possess an admissible solution  $u_1(z)$  and a meromorphic solution  $\varphi(z)$ , respectively. If

K. ISHIZAKI

 $u_1(z)$  and  $\varphi(z)$  share almost all poles, then the function  $u_2(z) := \varphi(z) - u_1(z)$  is an admissible solution of the equation (1.1).

2. Proofs of Theorems 1.1 and 1.2. Proof of Theorem 1.1. Since A(z) is an entire function, each pole of a meromorphic solution  $\varphi(z)$  is a simple pole with residue 1 or 2 (see [4, pp. 321-322]). Hence there exists an entire function f(z) such that  $\varphi(z) = f'(z)/f(z)$ . By simple computation, we see that f(z) satisfies the linear differential equation of third order

(2.1) w''' + 4A(z)w' + 2A'(z)w = 0.

We know that a fundamental set of the equation (2.1) is given by  $\{w_1^2, w_1w_2, w_1^2\}$ , where  $w_1(z)$ ,  $w_2(z)$  are linearly independent solutions of linear differential equation of second order

(2.2) w'' + A(z)w = 0(see e.g., [2, 2-8]). Thus we can write f(z) as  $f(z) = C_1 w_1(z)^2 + C_2 w_1(z) w_2(z) + C_3 w_2(z)^2$  $= (c_1 w_1(z) + c_2 w_2(z)) (c_3 w_1(z) + c_4 w_2(z)).$ 

Put  $\tilde{w}_1(z) := c_1 w_1(z) + c_2 w_2(z)$ ,  $\tilde{w}_2(z) := c_3 w_1(z) + c_4 w_2(z)$ . Then  $\tilde{w}_1(z)$ ,  $\tilde{w}_2(z)$  are also solutions of the equation (2.2). Define  $u_1(z) := \tilde{w}'_1(z)/\tilde{w}_1(z)$ ,  $u_2(z) := \tilde{w}'_2(z)/\tilde{w}_2(z)$ . Then  $u_1(z)$ ,  $u_2(z)$  satisfy the Riccati equation (1.1). We immediately obtain  $\varphi(z) = u_1(z) + u_2(z)$ .

The existence of a meromorphic solution  $\varphi(z)$  follows from the arguments above and from the existence theorem to the equation (2.2) with an entire coefficient A(z).

Proof of Theorem 1.2. Define  $f(z) := U_1(z, u_2(z))$ . Then we have  $U_2(z, u_2(z)) = f'(z) + f(z)u_2(z)$ . From (1.3),

(2.3)  $\Phi(z, \varphi(z)) = 3u_1(z)f(z) + f'(z) + f(z)u_2(z) = 0.$ Suppose that  $f(z) \neq 0$  in (2.3). Then we may write (2.3) as

(2.4) 
$$3u_1(z) + u_2(z) + \frac{f'(z)}{f(z)} = 0.$$

In this proof, for a transcendental meromorphic function g(z), we call  $z_0$ an admissible pole of g(z) if  $z_0$  is a pole of g(z) and neither a pole nor a zero of A(z). It is easy to see that the admissible solution  $u_1(z)$  of the Riccati equation (1.1) possesses an admissible pole with residue 1. Let  $z_0$  be an admissible pole of  $u_1(z)$ . We have that if  $z_0$  is a pole of f(z), then  $z_0$  is a pole of  $u_2(z)$ . Then from (2.4), we see that either  $z_0$  is a pole of  $u_2(z)$ , or  $z_0$  is not a pole of  $u_2(z)$  but a zero of f(z). First we treat the case when  $z_0$  is not a pole of  $u_2(z)$  but a zero of f(z). It is easy to see that the residue of the Laurent expansion of f'(z)/f(z) at  $z_0$  is a positive integer. This contradicts (2.4). Secondly we consider the case when  $z_0$  is a pole of  $u_2(z)$ . It follows from (2.4) that  $z_0$  is a simple pole of  $u_2(z)$ . We denote by R the residue in the Laurent expansion of  $u_2(z)$  at  $z_0$ . Write f(z) in a neighbourhood of  $z_0$  as

 $f(z) = C(z - z_0)^{\nu} + O(z - z_0)^{\nu+1}$ , as  $z \to z_0$ ,  $C \neq 0$ ,  $\nu \geq -2$ . By the definition of f(z), we see that  $\nu \geq -1$  if and only if R = 1. Using (2.4), we get

(2.5)  $3 + R + \nu = 0.$ 

Hence if R = 1, then from (2.5),  $4 = -\nu \leq 1$ , which is absurd. Hence, we

have  $R \neq 1$ , which implies that  $\nu = -2$ . From (2.5), we get R = -1. We have

(2.6) 
$$N(r, u_1) \leq N(r, u_2) + S(r, u_1)$$

Since  $u_1(z)$  is an admissible solution of the Riccati equation (1.1), we have  $m(r, u_1) = S(r, u_1)$ . From (2.6),

(2.7)  $T(r, u_1) \leq N(r, u_2) + S(r, u_1) \leq T(r, u_2) + S(r, u_1).$ 

It follows from (2.7) that a real function  $\psi(r)$  that satisfies  $\psi(r) = S(r, u_1)$  also satisfies  $\psi(r) = S(r, u_2)$ . Conversely, we assert that

(2.8)  $T(r, u_2) \leq T(r, u_1) + S(r, u_2).$ 

In fact, let  $z_1$  be an admissible pole of  $u_2(z)$ . Then by our assumption,  $z_1$  is a pole of  $u_1(z)$  and a pole of  $\varphi(z)$  simultaneously. Thus we have

(2.9)  $N(r, u_2) \leq N(r, u_1) + S(r, u_2).$ 

By means of the theorem on the logarithmic derivative, we have m(r, f'/f) = S(r, f). Recalling  $U_1(z, u_2)$  is a differential polynomial in  $u_2$ , for a real function  $\psi(r), \psi(r) = S(r, f)$  implies  $\psi(r) = S(r, u_2)$ . Hence from (2.4),

(2.10) 
$$m(r, u_2) \leq m(r, u_1) + m\left(r, \frac{f'}{f}\right) = S(r, u_1) + S(r, u_2) = S(r, u_2).$$

Therefore, the assertion (2.8) follows from (2.9) and (2.10). Hence in the sequel we may write  $S(r, u_1) = S(r, u_2)$  and we get

(2.11) 
$$T(r, u_1) = T(r, u_2) + S(r, u_2).$$

As seen in the arguments above, almost all poles of  $u_2(z)$  are simple poles with residue -1. Write  $u_2(z)$  in a neighbourhood of such  $z_1$  as

(2.12) 
$$u_2(z) = \frac{-1}{z-z_1} + O(z-z_1), \text{ as } z \to z_1,$$

and we have

(2.13) 
$$\frac{f'(z)}{f(z)} = \frac{-2}{z - z_1} + O(z - z_1), \text{ as } z \to z_1,$$

in a neighbourhood of  $z_0$ . We define the counting function concerning common zeros of two meromorphic functions f(z) and g(z). Let  $n(r, 0; f)_g$  be the number of common zeros of f(z) and g(z) in  $|z| \leq r$ , each counted according to the multiplicity of the zero of f(z). The counting function  $N(r, 0, f)_g$  is defined in the usual way. The integrated counting function  $\bar{N}(r, 0; f)_g(=\bar{N}(r, 0; g)_f)$  counts distinct common zeros of f(z) and g(z). We also see from the arguments above that  $N(r, f'/f)_f := N(r, 0; f/f')_f$  $= S(r, u_2)$ . Define

(2.14) 
$$\sigma(z) := 2u_2(z) - \frac{f'(z)}{f(z)}.$$

Then from (2.12) and (2.13),  $z_1$  is a regular point of  $\sigma(z)$ . This implies that  $N(r, \sigma) = S(r, u_2)$ . From (2.10) and (2.14), we get  $m(r, \sigma) = S(r, u_2)$ . Hence  $\sigma(z)$  is a small function with respect to  $u_2(z)$ . Combining (2.4) and (2.14), we obtain  $\varphi(z) = (1/3)\sigma(z)$ . We see from our assumption and (2.11) that it is not possible for  $\varphi(z)$  to be a small function with respect to  $u_2(z)$ . Therefore, we conclude that  $f(z) \equiv 0$  otherwise  $\varphi(z)$  is a small function with respect to  $u_2(z)$ . K. ISHIZAKI

(1.1).

We can find the existence theorem to meromorphic solutions of the equation (1.1) and the study of the equations (1.2) and (2.1) in, for instance, [1] [5] [6]. Finally, we give a summarizing diagram below.

$$w'' + A(z)w = 0 \xrightarrow{f=w_1w_2} f''' + 4A(z)f' + 2A'(z)f = 0$$

$$\downarrow u = w'/w \qquad \qquad \downarrow \varphi = f'/f$$

$$u' + u^2 + A(z) = 0 \xrightarrow{\varphi=u_1+u_2} \varphi'' + 3\varphi'\varphi + \varphi^3 + 4A(z)\varphi + 2A'(z) = 0.$$

## References

- [1] S. B. Bank, G. G. Gundersen, and I. Laine: Meromorphic solutions of the Riccati differential equation. Ann. Acad. Sci. Fenn. Ser. A I Math., 6, 369-398 (1981).
- [2] M. Greguš: Third Order Linear Differential Equations. D. Reide, Dordrecht, Boston, Lancaster, Tokyo (1987).
- [3] W. K. Hayman: Meromorphic Functions. Clarendon Press, Oxford (1964).
- [4] K. Ishizaki: Admissible solutions of second order differential equations. Tôhoku Math. Jour. Math., 44, 305-325 (1992).
- [5] —: On the complex oscillation of linear differential equations of third order. Complex Variables Theory Appl. (to appear).
- [6] I. Laine: Nevanlinna Theory and Complex Differential Equations. W. Gruyter, Berlin, New York (1992).
- [7] R. Nevanlinna: Analytic Functions. Springer-Verlag, Berlin, Heidelberg, New York (1970).