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1. Center curves. We consider the family of real cubic maps x
g(x) c3x + c2x + clx + co (c3=/= O, c R). By a suitable real affine
transformation, any map g(x) is transformed to a unique map f(x) ax3-

3Ax 4- elB I, where a sgn(g"). The real affine conjugacy class of g or f
can be represented by (A, B) if B 4= 0. But if B 0, a should be added as
an essential class invariant, as x x3- 3Ax and x x3 3Ax belong
to different classes. Milnor ([1]) defined thus the disjoint union of the upper
half-plane H+ {(A, B)[B > 0} and the lower half-plane H- {(A, B)
B -< 0} to be the moduli space of the conjugacy classes of our maps.

The map x -’f(x) has two critical points + (which may coincide
or be purely imaginary) which will be denoted with pl, p2. When the orbit
{fn(p), fn(p.); n 1,2,...} is a finite set, f is called a center map and the
coordinates (A, B) of f will be called a center in the rnoduli space.

Following Milnor ([1]), the centers are classified as follows. (In the fol-
lowing t, p, q denote integers.)

A center is of the type d,p if two critical points of the center map coin-
cide p p. and has the period p f P(p) p. (In fact, only possible values
for p in this case are 1, 2.) A center is of the type ]+q if f (pl) P2 and

f q(p) pl of the type (t) if ft(pl): p. and f(p): p of the type
),q if f (p) p and f

q (p) p2.
These exhaust all types of centers. It is clear that there are only a finite

number of centers of a given type.
Example. There exist three centers of type c<). The corresponding pa-

rameters are (A, B) (-- .75040, .18820), (-- .74949, .18679),
(-- .0924912, .0614376).

From now on, we shall limit our consideration to the case a A > O.
Then we observe that the following theorem holds.

Theorem. For a given p, there exist an algebraic curve CDp containing all
centers of the type C)p and ,, and another algebraic curve BCp containing
all centers of the type 13+ and ). Precisely we obtain the following curves"

CD1. B 4A ,4 +

BCI’B-4.4 A-

CD2" B- 8AaB + 4AB- 5AB + 2B + 16A 16A
-12A+ 16Aa-4.4+ 1 =0,
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BC2" B- 12AB- 6AB + 2B + 48AB + 24AB + 21AB
-6AB+B-64A+96A7-20A- 12A-A- 0,

Proof. We shall give a proof for CD1. For a center map f(x) ax3-

3Ax + vii B to be of the type C(k)l or $)1,k, we should have f(fa-) v/-aA

(or f(--d-)= d-A, whence follows B 4A A + In the same way,

we obtain the curves CDp and BCp.
Remark 1. The centers of type C( and type ), exist only in the

third quadrant.
Remark 2. We can factorize the curve CD2 as follows"

CD2-1’ 2B- (4A- 1)v/9A- 4A 8Aa + 4A- 5A + 2 0,

CD2-2" 2B + (4A- 1)v/9A- 4A 8Aa + 4A- 5A + 2 0.

The curves CD and BC are called center eurves.
2. Monotonieity of toplgieal entropy along eenter curves. In [2], Mil-

nor and Thurston considered the growth number s and topological entropy
log s of continuous maps f, and conjectures concerning them in case of cubic

maps were enunciated by Milnor in [1]. Block and Keesling ([3]) gave then an
algorithm to calculate them and Prof. Milnor kindly sent us their papers
showing the result of calculation. (In these papers, a different representation
is used for the moduli space. For H+ the coordinates (A, b), b v/B, in-
stead of (A, B) and for /-/- the coordinates (A, b’), b’= -vl B I, instead
of (A, B) are used.)

Using the method of [2], we calculate growth numbers of cubic maps
along center curves CD1, BC1, CD2-1, and CD2-2. The growth number is
identically i on CD1 in the upper half (A, B)-plane and on CD2-1.

Center curves BC1 and CD2-2 are shown in Fig. 1 and CD1, BC1, and
CD2-2 in Fig. 2 together with the equi-growth number lines in the figures
due to Block and Keesling. The region of Fig. 1 (resp. 2) is [.57, 1.03] x
[0, .43] (resp. [-- 1.05, --.09] x [0,- 1.35]) in (A, b) (resp. (A, b’) -)
plane.

A glance at Figs. 1 and 2 suggests that the growth number and the topo-
logical entropy vary monotonously along an center curve. We should like to
propose this conjecture. Tables 1-5 which we have calculated support also
this conjecture.

Bifurcation diagrams for the cubic maps along center curves are shown
in Figs. 3 and 4. Fig. 3 corresponds to Table 2 and Fig. 4 to Table 5. That
we see here flip bifurcations as in unimodal case seems to lend strong sup-
port to our conjecture.

We would like to express our gratitude to Dr. M. Shishikura for useful
comments and enlightening discussions.
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Fig. 1

Fig. 2
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Fig. 3. Bifurcation diagrams for the cubic maps with a parameter A
along center curve BC1 (.6 < A < .74999).

Fig. 4. Bifurcation diagrams for the cubic maps with a parameter A
along center curve CD2 (-.85 < A <-.5).
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(A,B)
Table

type s II (A, B) type.
indicates that parameter (A, B) is not a center.

(-.7820, -.2488)
(-.7787, .24’0)
(-.7773, -.2390)
’(’.7762,-.2369)
(-.7749, -.2344)
(-.737,-.2125)

(*)

(*)
C(9)I
(*)

Table 1" CD1
1 + v/ (-.7,-.112)
2.3593 (-.6987,-.1104)
2:2226 (-.6974,-.1088)
2.2055 (-.6887,-.0981)
2.1903 (-.6861,-.0950)
2’.17 (-.6737,-.0813)

2 (-,6524,-.0606)

(*)
’1,5
(*)
)1,6
91,,3

:DI8

1.7291
1.7156

1.5128
1

(.64s, .09)

(.6722, .0797)
(..68.47.,:093.4)
(.6986, .110.2)

Table 2:BC1 (in the upper half-plane)
C()8
(*)

(*)
(*)

1 (.7083, .1229)
1.2720 (.7132, .1297)
1.4655 (.7375, .1664)
1.5128 (.7444, .1779)
1.5972 (.7446, .1782)

3(,5)

C(1)3
B+

C()4

(*)

1.7518
1.8393

2

’.2950,-.7457)
(-.3285,-.9019)
(-.3291,-.9052)
(-.3325,-.9217)
(-.3,533,-1.0291)
(-.3646,-1.0904)
(-.3808,-1.1819)

Table 3: BCl.(in.t,he lower half-plane)
(*) 1 (’.3875,-1.208)
(*)
(*)
(*)
(*)
BI+2
(*)

1.5302 (-.39i5,-1.2446)
(-.3925,-1.2506)

1.5302 (-.3968,-1.2768)
_+

B+
(*)

1.7291
1.8392
1.93823

2

(.4444,.6708)
(.7443,.0009)

(.7528,.0015)
(.7693, .’0031)’
(.7743, .0037)
(..8069’,’0095’)

Table 4" CD2-2 (in the upper half-plane)
C(9)

2,6
C(9)
(,9)
(*)

(.8152, .0115)
(.8507,.0231)

1.1884 (.8536, .0243)
V/ (.8861, .0402)

1.7653
(.8903, .0427)

C(9)2
(*)

Table 5:CD2-2 (in the lower half-piatm)

1.8246
2

(-.857i,’-.1147)
(-.845,-.0959)
(-.7966,-.0389)

(-.7882,-.0317)
(,.79,-.03i5)
(-.7859,-.0299)
(-.7836,-.0281)
(-.7834,-.0280)
(-.7752,-.0221)

1 +V (-.7733,-.0209)
2 (-.7706,-.0192)

(-.7685,-.0179)
1.9015 (-.7672,-.0171)
118949 (-.7653,-.0160)
118784 (-.7544,-.0105)
1.8392 (-.7506,-:0088)

(-.7437,-.0062)
1.7220 (-.7367,-.0040)

1.6988
1.6483
+v

2

1.5128
1.4655
1.2720

1
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