23. An Elementary Proof of Gauss' Genus Theorem

By Fidel Nemenzo and Hideo Wada

Department of Mathematics, Sophia University
(Communicated by Shokichi Iyanaga, m. J. A., April 13, 1992)
§ 1. Preliminaries. Let $m \neq 1$ be a square-free integer and d the discriminant of $K=\boldsymbol{Q}(\sqrt{m})$. If A and B are ideals in K such that $A=(\rho) B$ and $N \rho>0$, we write $A \approx B$. Let p_{1}, \cdots, p_{s} be the odd prime divisors of m. We shall prove the next theorem without using Dirichlet's theorem of arithmetical progressions.

Theorem 1 (Gauss). Let A be an ideal such that $(A, d)=1$. Then $A \approx B^{2}$ for some ideal B if and only if $\left(\frac{N A}{p_{i}}\right)=1,1 \leq i \leq s$.

First we prove the next proposition.
Proposition 1. Let A be an ideal. Then $A \approx B^{2}$ for some ideal B if and only if there exists a non-zero integer z and $\alpha \in A$ such that $z^{2}=\frac{N \alpha}{N A}$.

Proof. Let $A=\rho B^{2}$ with $N \rho>0$. If $0 \neq \beta \in B$, then $\rho \beta^{2} \in A$ and $\frac{N\left(\rho \beta^{2}\right)}{N A}$ $=\left(\frac{N \beta}{N B}\right)^{2} . \quad$ Conversely, let $z^{2}=\frac{N \alpha}{N A}$, where $z \in N$ and $\alpha \in A$. Let C be an ideal such that $(\alpha)=A C$. We may assume that C is primitive. Then $z^{2}=$ $N C$. If $p \mid z$ then since C is primitive, p decomposes in K, i.e., $(p)=P P^{\sigma}$, $P \neq P^{\sigma}$. If $p^{m} \| z$ and $P \mid C$, then $P^{2 m} \| C, P^{\sigma} \nmid C$. Therefore $A \approx\left(\prod_{p^{m \| z}} P^{\sigma m}\right)^{2}$.

If K is real, let r_{n} be the 2 -rank of the ideal class group in the narrow sense and r_{w} be that of the ideal class group in the wide sense. Then we have the next corollary (cf. [1], [3], [4]).

Corollary. $\quad r_{n}=r_{w} \Leftrightarrow p_{i} \equiv 1(\bmod 4), 1 \leq i \leq s$.
Proof. $\quad r_{n}=r_{w} \Leftrightarrow(\sqrt{m}) \approx B^{2}$ for some ideal B. When $m \not \equiv 1(\bmod 4)$, then $(\sqrt{m})=[m, \sqrt{m}]$. Writing $\alpha=m x+\sqrt{m} y \in(\sqrt{m})$, we get $\frac{N \alpha}{N(\sqrt{m})}=$ $m x^{2}-y^{2}$. Therefore

$$
\begin{aligned}
r_{n}=r_{w} & \Leftrightarrow m x^{2}=y^{2}+z^{2} \text { has a non-trivial integral solution } \\
& \Leftrightarrow p_{i} \equiv 1(\bmod 4), \quad 1 \leq i \leq s .
\end{aligned}
$$

If $m \equiv 1(\bmod 4)$, then $(\sqrt{m})=\left[m, \frac{m+\sqrt{m}}{2}\right]$. We get similarly the same result.
§ 2. Proof of Theorem 1. Let A be a primitive ideal such that (A, d) $=1$. We can write $A=\left[a, \frac{b+\sqrt{d}}{2}\right]$ where $N A=a>0$ and $a \left\lvert\, N\left(\frac{b+\sqrt{d}}{2}\right)\right.$. Hence

$$
\begin{equation*}
b^{2}-4 a c=d \tag{1}
\end{equation*}
$$

for some integer c. Writing $\alpha=a x+\frac{b+\sqrt{d}}{2} y \in A$, we have

$$
N \alpha=\left(a x+\frac{b}{2} y\right)^{2}-\frac{d}{4} y^{2} .
$$

Therefore

$$
\begin{equation*}
\frac{N \alpha}{N A}=z^{2} \Leftrightarrow(2 a x+b y)^{2}-d y^{2}=a(2 z)^{2} . \tag{2}
\end{equation*}
$$

Write $a=a_{1} a_{2}^{2}$ where α_{1} is square-free. From Proposition 1 and (2), we get (3) $A \approx B^{2} \Leftrightarrow a_{1} x^{2}+m y^{2}=z^{2}$ has a non-trivial solution.

If a and b are non-zero rational integers, we shall write $a R b$ whenever a is a square modulo b. We need the next theorem.

Theorem 2 (Legendre). Let a and b be positive square-free integers. Then $a x^{2}+b y^{2}=z^{2}$ has a non-trivial solution if and only if aRb, bRa, and $-\frac{a b}{(a, b)^{2}} R(a, b)$. (An elementary proof can be found in [2].)

Now $m R a_{1}$ follows from (1). Since $\left(a_{1}, m\right)=1$, we get $-\frac{a_{1} m}{\left(a_{1}, m\right)^{2}} R\left(a_{1}, m\right)$. Therefore if $m>0$, then

$$
\begin{aligned}
A \approx B^{2} & \Leftrightarrow a_{1} R m \\
& \Leftrightarrow a_{1} R p_{i}, \quad 1 \leq i \leq s \\
& \Leftrightarrow\left(\frac{a}{p_{i}}\right)=1, \quad 1 \leq i \leq s .
\end{aligned}
$$

If $m=-m_{1}<0$, then

$$
\begin{aligned}
A \approx B^{2} & \Leftrightarrow a_{1} x^{2}=m_{1} y^{2}+z^{2} \\
& \Leftrightarrow\left(a_{1} x\right)^{2}=a_{1} m_{1} y^{2}+a_{1} z^{2} \\
& \Leftrightarrow a_{1} m_{1} R a_{1}, \quad a_{1} R a_{1} m_{1}, \quad \text { and } \quad-m_{1} R a_{1} \\
& \Leftrightarrow a_{1} R m .
\end{aligned}
$$

This completes the proof of Theorem 1.

References

[1] D. Hilbert: Zahlbericht. §77, Satz 108.
[2] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory. GTM 84, Springer-Verlag (1982).
[3] P. Kaplan: Comparaison des 2 -groupes des classes d'idéaux au sens large et au sens étroit d'un corps quadratique réel. Proc. Japan Acad., 50, 688-693 (1974).
[4] M. Saito and H. Wada: Tables of ideal class groups of real Quadratic fields. ibid., 64A, 347-349 (1988).

