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19. A Note on Untwisted Deform-spun 2-knots

By Masakazu TERAGAITO
Department of Mathematics, Faculty of Science, Kobe University

(Communicated by Heisuke HIRONAKA, M. J. A., April 13, 1992)

In [5] Litherland introduced the process of deform-spinning of which
twist-spinning [8], roll-spinning [1] are particular examples. Given a
1-knot (83, K), let g be a self-homeomorphism of (S?, K) with g=1id on a
tubular neighbourhood K X D* of K. The deform-spun 2-knot correspond-
ing to g is defined as follows.

Fix a point 2z on K. Take a ball neighbourhood K_ of z in K, and set
B_=K_xD' Let (B,,K,) be the complementary ball pair of (B_,K.)
which is the standard ball pair. Then we construct a(B,,K,)xB*U,(B,,
K,)x,0B? where

B,,K)X,0B*=(B,,K,)XI/((x,0)~(g(x), 1) for all x e B,).
This is a locally-flat sphere pair depending only on the isotopy class y of ¢
(rel KxD?%. (See[5].) We denote this 2-knot by (S*, yK), and call it the
deform-spun knot of K corresponding to y, or g.

Let 4{(K) be the group of self-homeomorphisms g of ($%, K) with g=1id
on KxXD? and let 9(K) be J{(K) modulo isotopy rel K xXD* We call ele-
ments of P(K) deformations of K. It is well-known ([4], [7]) that the
exterior X(K)=cl(S*—KxD? admits a map p: X(K)—oD* such that
Doz : 0X(K)=K x3D*—oD* is the projection. We will refer to such a
map as a projection for K. (We always assume that K X ¢ is null-homolo-
gous in X(K) for § € 9D*.) A deformation y € P(K) is said to be untwisted
if there is a projection p for K and a representative g of y with p(9|x«,)
=p. If yis untwisted, we say that yK is untwisted.

For any 1-knot K, twist-spinning = € D(K) can be defined. (See [5].)
Zeeman showed that any +1-twist-spun knot z*'K of K is unknotted [8].
But the deformation = is not untwisted.

In this note we prove:

Theorem. There exist infinitely many 1-knots K and untwisted de-
formations y of K such that the corresponding untwisted deform-spun 2-
knots K are unknotted.

Proof of Theorem. For a projection p: X(K)—oD? if 6eoD* is a
regular value, then F*=p-'() is a compact, codimension 1 submanifold of
X(K) and 9F’=K x {#}. That is, F’ is a Seifert surface for K. (See [4],
[7]1) Let ye 9(K) be an untwisted deformation and let g be a repre-
sentative of y with p(¢|xx)=p. Then g(F’)=F" for each §cdD’. A tub-
ular neighbourhood of yK is 0K, X D*X B*UK , X D* X 9B* and so yK has the
exterior
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X(GK)=K_xoD*XB*UX(K) X ,0B".
The space K_Xx {0} X B*UF’ X ,0B* gives a Seifert (hyper) surface for yK,
which is denoted by yF”.

Lemma. Let (S°,K,) be a 1-knot with projection p,: X(K,)—oD? i=
1,2. Let F,=p;(0) be a Seifert surface for K,. Let y,e D(K,) be an un-
twisted deformation and let g, be a representative with p,(9;|xxy)=p:- If
there exists a homeomorphism h: F,—F, such that hg,=g,h, then untwisted
deform-spun 2-knots K, and 1,K, have homeomorphic Seifert (hyper) sur-
faces r.F', and y,F,.

The proof is straightforward, so we omit it.

We will denote the knot in Fig. 1 by K(m,n), where n>3 is an odd
integer, and 2m-+1 indicates the number of half-twists (left-handed if
m>0, right-handed if m<0). Note that K(0,%n) and K(—1,n) are torus
knots of type (2,n) and (2, —n), respectively.
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Fig. 1

We see that K=K(m, n) has two periods, n and 2. That is, there are
orientation-preserving self-homeomorphisms g, and g, of (S?, K) such that
the set J, of fixed points of ¢, is a 1-sphere disjoint from K, and g, and g,
are of period » and 2, respectively. We may assume that J,, J, are orien-
ted so that lk(K,J)=2, kK, J,)=(—1)"n, lk(J,J)=1. Furthermore we
assume that g, corresponds to the rotation through 2z/n around the axis
J,.

We will define an untwisted deformation of K using ¢, and g,.

Let q: 8*—8%/g,9, be the quotient map and let K=q(K), J,=q(J,). The
map q is the Z,®Z,-branched cover branched over J, UJ, corresponding to
Ker[n(S*—J,UJ)—H,(S*~J,UJ)—Z,DZ,], where the first map is the
Hurewicz homomorphism and the second sends a meridian ¢, (¢, resp.) of
J, (J; resp.) to (1,0) ((0,1) resp.) € Z,®Z,. Let p: X(K)—0D® be a projec-
tion for K, where a tubular neighbourhood K x D? of K is taken to be dis-
joint from J,. Then ¢ (Kx D> is a g,<invariant tubular neighbourhood
K x D* of K such that q(x, v)=@2nx,v) for xe K, ve D*. Here, a circle is
identified with the quotient space R/Z. We see that ¢,¢;|xxp: is given by
(x, v)—>(@x+1/2n,v). Take a g,-invariant collar 0X(K)x I of 6X(K) in X(K)
such that 6X(K) is identified with 6X(K) x {0}, and define a self-homeomor-
phism & of (S*, K) by
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h(x, 0, ) =@ —1—¢)/2n,6, $) for (x,0,¢) e KxaD*X1I,
Mz, v)=(@—1/2n,v) for (x,v)e KxD?
h(y) =y for ye X(K)—oX(K)xI.
Then hg,9slxxp:=1d, hg:9sloxx)-sxmxn=9195 and Dq(hg.9:|xx)=Dq. Let
o be the class of hg,g, in P(K). It is now evident that o is untwisted
with respect to a projection pg for K.

As shown in Fig. 2, K(m,n) has a Seifert surface F(m,n) of genus
(n—1)/2, which is invariant under g, and J,NF ={2 points}, J,NF =
{n points}. Note that F'(0,n) and F(—1,n) are fiber surfaces for K(0,n)
K(—1,n), respectively.
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Fig. 2

Proof of Theorem. By Lemma, oK(m,n) and «K(0,n) have homeo-
morphic Seifert surfaces. The map hg,g, is just the monodromy map on
the fiber surface F'(0,n) (cf. [6: §9], [8: Chapter 19]). It follows that
oF(0,n) is a 3-cell. This completes the proof.

Remarks. (1) Moreover, we can prove that for any integer r>2
the untwisted deform-spun 2-knot w”K(m,n) has a Seifert surface homeo-
morphic to the punctured Brieskorn 3-manifold 2(2,n,7)°. The r-fold
cyclic branched covering of the (2,n)-torus knot is 2(2,%,7). Hence the
r-twist-spun knot of the (2, n)-torus knot has a fiber 2(2,n,7)°. The knot
K(m,n) is a torus knot if and only if m=0, —1. We might expect that
any nontrivial untwisted deform-spun 2-knot «’K(m,n) is non-fibered
unless K(m,n) is a torus knot. But I have been unable to prove this. In
fact, Kanenobu [2] has observed that if K(m,n) is not a torus knot and if
n Y m then o’K(m, n) is non-fibered with Seifert surface 3(2, n,2)° =L(n, 1)°,
the punctured lens space of type (n,1).

(2) If K(m,n)is a torus knot, then w=r in 9(K) [56: Cor. 6.5]. But
if K(m,n) is not a torus knot, the untwisted deformation » is not con-
tained in the subgroup {r) of 9P(K) generated by ¢ [56: Cor. 6.3].
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