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19. A Note on Untwisted Deform.spun 2.1nots

By Masakazu TEIAGAITO
Department oi Mathematics, Faculty o,f Science, Kobe University

(Co,mmunicated by Heisuke HmON/KA, M. Z. A., April 13, 1992)

In [5] Litherland introduced the process of deform-spinning of which
twist-spinning [8], roll-spinning [1] are particular examples. Given
1-knot (S, K), let g be a self-homeomorphism of (S,K) with g=id on a
tubular neighbourhood K D of K. The deform-spun 2-knot correspond-
ing to g is defined as follows.

Fix a point z on K. Take a ball neighbourhood K_ of z in K, and set
B_--K_D. Let (B/,K/) be the complementary ball pair of (B_,K_)
which is the standard ball pair. Then we consruc 3(B/, K/) B J (B/,
K /),B2, where

(B/, K /) B-- (B/, K /) I / ((x, O) (g(x), 1) for all x e B/).
This is a locally-flat sphere pair depending only on the isotopy class , of g
(rel K D). (See [5].) We denote this 2-knot by (S, ,K), and call it the
deform-spun knot of K corresponding to ., or g.

Let ((K) be the group of self-homeomorphisms g of (S, K)with g=id
on KD and let (K) be /(K) modulo isotopy rel KD. We call ele-
ments of (K) deformations of K. It is well-known ([4], [7]) that the
exterior X(K)=cl(S--KD) admits a map. p" X(K)-D such that
plox()’3X(K)=K3DD is the projection. We will refer to such
map. as a projection for K. (We always assume that K t? is null-homolo-
gous in X(K) for 0 e D.) A deformation . e (K) is said to be untwisted
if there is a projection p for K and a representative g of y with
=p. If . is untwisted, we say that ,K is untwisted.

For any 1-knot K, twist-spinning r e _q)(K) can be defined. (See [5].)
Zeeman showed that any +__ 1-twist-spun knot rlK of K is unknotted [8].
But the deformation r is not untwisted.

In this note we prove"

Theorem. There exist infinitely many 1-knots K and untwisted de-

formations of K such that the corresponding untwisted deform-spun 2-
knots K are unknotted.

Proof of Theorem. For a projection p" X(K)-+D, if 0 e 0D
regular value, then F=p-(0) is a compact, codimension 1 submanifold of
X(K) and 3F--K {0}. That is, F is a Seifert surface for K. (See [4],
[7].) Let . e (K) be an untwisted deformation and let g be a repre-
sentative of . with P(glx())---P. Then g(F)=F for each e D. A tub-
ular neighbourhood of .K is K D B J K D 3B and so -K has the
exterior
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X(K) K_ D B X(K) 3B.
The space K_ {t}B UFq3B gives a Seifert (hyper) surface for .K,
which is denoted by ,F.

Lemma. Let (S, K) be a 1-knot with projection p" X(K)-3D, i=
1, 2. Let F=p;(0) be a Seifert surface for K. Let e (K) be an un-
twisted deformation and let g be a representative with P(gIx())--P. If
there exists a homeomorphism h" F--F such that hg=gh, then untwisted
deform-spun 2-knots ’1K1 and K. have homeomorphic Seifert (hyper) sur-
faces yF and yF.

The proof is straightforward, so we omit it.
We will denote the knot in Fig. 1 by K(m, n), where n3 is an odd

integer, and 2m+l indicates the number of half-twists (left-handed if
m0, right-handed if m0). Note that K(O,n) and K(--1, n) are torus
knots of type (2, n) and (2, -n), respectively.

2

Fig. 1

We see that K=K(m, n) has two periods, n and 2. That is, there are
orientation-preserving self-homeomorphisms g and g of (S, K) such that
the set J of fixed points of g is a 1-sphere disjoint from K, and g and g
are of period n and 2, respectively. We may assume that J, J are orien-
ted so that lk(K, J)=2, lk(K, J)=(--1)n, lk(J, J)--1. Furthermore we
assume that g, corresponds to the rotation through 2/n around the axis
J.

We will define an untwisted deformation of K using g and g.
Let q" S--S/gg be the quotient map. and let K--q(K), ]--q(J). The

map q is the Z(R)Z-branched cover branched over ] U]. corresponding to
Ker[(S--JUJ)-H(S--jUj)-.ZZ], where the first map. is the
Hurewicz homomorphism and the second sends a meridian t (t resp.)of
J (J resp.) to (1, 0) ((0, 1) resp.) e ZZ. Let " X(K)-3D be a projec-
tion for K, where a tubular neighbourhood KD of K is taken to be dis-
joint from ]. Then q-(D) is a g-invariant tubular neighbourhood
K D of K such that q(x, v)=(2nx, v) for x e K, v e D. Here, a circle is
identified with the quotient space R/Z. We see that ggl is given by
(x, v)--(x + 1/2n, v). Take a g-invariant collar X(K) I of X(K) in X(K)
such that X(K) is identified with X(K) {0}, and define a self-homeomor-
phism h of (S, K) by
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h(x, O, )=(x- (1-)/2n, , ) for (x, t, ) e K 3D I,
h(x, v)= (x-1/2n, v) for (x, v) e K D2,

h(y) y or y e X(K) X(K) I.
Then hggl=id, hgglo(x()-))=gg, and q(hgglx())=q. Let
w be the class of hgg in )(K). It is now evident that is untwisted
with respect to a projection q for K.

As shown in Fig. 2, K(m, n) has a Seifert surface F(m, n) of genus
(n-1)/2, which is invariant under g and JF= {2 points}, JF=
{n points}. Note that F(0, n) and F(-1, n) are fiber surfaces for K(0, n)
K(- 1, n), respectively.

Fig. 2

Proof of Theorem. By Lemma, oK(m,n) and oK(O,n) have homeo-
morphic Seifer surfaces. The map hgg is just the monodromy map on
the fiber surface F(0, n) (cf. [6" 9], [3" Chapter 19]). It follows that
wF(0, n) is a 3-cell. This completes the proof.

Remarks. (1) Moreover, we can prove that for any integer r2
the untwisted deform-spun 2-knot wK(m, n) has a Seifert surface homeo-
morphic to the punctured Brieskorn 3-manifold $(2, n,r). The r-fold
cyclic branched covering of the (2, n)-torus knot is X(2, n, r). Hence the
r-twist-spun knot of the (2, n)-torus knot has a fiber $(2, n, r). The knot
K(m,n) is a torus knot i and only if m=0, -1. We might expect that
any nontrivial untwisted deform-spun 2-knot wK(m,n) is non-fibered
unless K(m, n) is a torus knot. But I have been unable to prove this. In
fact, Kanenobu [2] has observed that if K(m, n) is not a torus knot and if
nm then wK(m, n) is non-fibered with Seifert surface X(2, n, 2) =L(n, 1),
the punctured lens space of type (n, 1).

(2) If K(m, n) is a torus knot, then w=r in (K) [5" Cor. 6.5]. But
if K(m, n) is not a torus knot, the untwisted deformation is not con-
tained in the subgroup @} of (K) generated by r [5" Cor. 6.3].
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