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1o We fix an odd prime p. Let k be a quadratic number field and ]
the Hilbert p-class field of k. Denote the p-primary parts of the ideal
class groups of k and of ] by Cl((k) and by CI()(]), respectively.

If the p-rank of Cl((k) is less than or equal to one, CI(’)(]) is trivial.
In fact, Gal(k/k) is then cyclic, and does not have any essential central
extensions because the Schur multiplier of it is trivial.

If the p-rank of Cl(’)(k) is greater than one, however, CI()(])is not
trivial anymore. We see by Nomura [4] that ]/k has a non-trivial un-
ramified central extension; in fact, we can show the following theorem by
mathematical induction with Theorem 1 of [4]"

Theorem 1. Suppose that the p-rank r of Cl((k) of a quadratic
number field k is greater than one. Then /k has an unramified central
extension K/k/k whose group Gal(K/k) is isomorphic to the metabelian
group D,

.(-- 1 [a aj]--c,D (a,c,jli 1, ,r,] i+l, ,r), a( v,
[a, c,] [c,, c,] 1, i-- 1, ., r, i--i+ 1, ., r, l_m n_r,

where the abelian group Cl(P)(k) is of type ((1), ...,e(r)), e(i)=pe’, i-1,
.., r, l_el_.. _er. In particular, we have Cl(p)(k)l L-1 e(i) (r-) and

p-rank (Cl()(k))

For simplicity, put C’-CIp)(k) and G’-Gal(fc/k) where is the
Hilbert p-clase field of ]; denote the alternative product of C by itself by
CAC, and the lower central series of G by

G,=GG=[G,, G]G=[G, G]....
Then CAC may be identified with the Schur multiplier of C, and is iso-
morphic to the commutator group.

[D, D]=(c,ll_i<]r)
of D of the theorem. Since [D, D] is contained in the center of D, we see

Corollary. Let the notation and the assumptions be as above. Then
the field K of the theorem is the maximal unramified central extension of
f/k hence, in particular, G/G is isomorphic to the group D of the theo-
rem, and G/G is to CAC.

It is possible to give a better estimate of the size of CI()(/) than that
of Theorem 1 in case of an imaginary quadratic number field k; in fact, k
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has a specific characteristic on capitulation of its ideals which claims a
strong condition on the structure o G. We shall explain it in the next
section. We see then not only that G itself can not be so small as to be
isomorphic to the group D of Theorem 1 but also that the p-rank of

is much greater than (). Since / is a Galois extension o the rational

number field Q, there exists an element of order 2 in Gal(//Q) which
induces a non-trivial automorphism of / over Q; it gives an inner auto-
morphism of order 2 which is non-trivial on Gal (folk). Our main pur-
pose of this paper is to show

Theorem 2. Let the notation and the assumptions be as above and
suppose that k is an imaginary quadratic number field. Then we have

(2) [631> =1 [C"
( 3 ) p-rank (Cl(’)(k))>p-rank(CAC)+p-rank(G[-)

(4) p-rank(G-)> ,=x (r-max {n]el+... +en<et})>(rl)-l.
2. We denote Gal (//k) and Gal (//k), simply by G and by A, respec-

tively the commutator group. G of G is equal to Gal(//]) A is isomor-
phic to G/G2. By class field theory, the Artin maps of k and of/ give iso-
morphisms of A and of G, respectively, onto C=CI()(k) and onto Cl)(k).

In our recent work [3], we see that the metabelian p-group G for an
imaginary quadratic number field k satisfies the following two conditions
(A) and (B)"
(A) For every normal subgroup, H of G with cyclic quotient G/H, the

index [Ker Ve." G] for the transfer V," G-H/[H, H] coincides
with the index [G" H]

(B) There exists an automorphism of G of order 2 such that g/ be-
longs to G. for every g e G.

The first condition comes from a property of k on capitulation of ideals"
Let K be an unramified abelian p-extension o k and H the corresponding
subgroup of G then HI[H, H] is isomorphic to the p-primary part CI(v)(K)
of the ideal class group, of K by the Artin map, for K. We define the
capitulation homomorphism ]/’C--CI()(K) by regarding ideals of k nat-
urally as those of K. The Artin maps of k and of K transform this to
the homomorphism Vz" G/G--+H/[H,H] which is naturally induced
from the transfer Vein of G to H (cf. e.g. Miyake [2]); hence the order of
Ker/ coincides with the index [Ker Vein" G]. The index [G" H] is
none other than the degree [K" k]. If K/k is a cyclic extension, further-
more, we have

}Ker ]:I=[K" k].[E" N/(E)]
where E and E are, respectively, the unit groups of k and of K, and
N/ is the norm map (cf. e.g. Schmithals [5]). We have E=[+I} because
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k is an imaginary quadratic field; (note that the field of the 3rd or the 4th
roots of 1 has the class number 1). Hence we have [E" N/(E)]--I be-
cause [K" k] is odd by the assumption. This shows our condition (A). (Cf.
[3], Proposition 1.)

Next let us see our group G satisfy the condition (B). Take an ele-
ment p of order 2 in Gal(//Q) it gives the non-trivial automorphism of
k. Let us denote the inner automorphism of Gal(//Q) defined by p by ;
it induces an automorphism of G and an action of p on A. We also have
a natural action of p on C. The Artin map of C onto A is compatible
with these actions of p. We have, therefore, the desired result by the
next proposition ([3], Proposition 2) due to Suzuki.

Proposition 1. Let k be a quadratic extension of an algebraic number
field ko of finite degree, and denote the non-trivial automorphism of k/ko by
p. Let c be an element of the ideal class group Cl(k) of k, and suppose
that its order is relatively prime to the class number Cl(k0)l of ko. Then
we have c ---C-lo

3. First we give a rough sketch of the proof of Theorem 1. It is
easy to see that there exists an automorphism of D of order 2 such that

a=a;, c,=c,, i= l, r, ] =i+ l, r.
Let E denote the semi-direct product of D and (} the commutator group
[D, D] is normal in E and contained in both of [E, E] and the center of E;
hence in particular, E is a non-splitting central extension of E/[D,D].
We may, by Proposition 1, identify this quotient group, with Gal(//Q).
Put I[D, D]l=p, and take a series of subgroups of [D, D],

Uo=[D,D]UU... U=I,
such that [Ui" U/]=p, t=0,1,...,n-1. Then we have a series of non-
splitting central extension E/Ut/ of E/U by a cyclic group Ut / Ut / of
order p. We now apply Theorem I of Nomura [4] first to the Galois
tower k/k/Q to obtain an unramified extension K of k such that it is nor-
mal over Q with the Galois group, isomorphic to E/U; then next do it to
K/k/Q to obtain K, and so on, and finally have an unrmified extension
K’--K of k such that Gal(K/Q) is isomorphic to E. It is clear that
Gal(K/k) is isomorphic to our group D. We have proved our Theorem 1.

The corollary to it is also apparent (cf. e.g. Huppert [1], V, 23.3).
4. Next we study the structure of G Gal(//k) where we can see

effects of the conditions (A) and (B).
4-1. Let us choose a set of generators of G,

G=(cli=l,...,r), (’eG=[G,G], i=l,...,r,
and put

[c, a]=-,,, l_i]_r,
in correspondence to those of D-G/G. We take r subgroups

H=(a[l_nr, n:/:i}.G, i=1,...,r,
to utilize the condition (A); apparently G/H is cyclic; it is o order (i)
and generated by the coset of a. For simplicity, we denote the transfer
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of G to H by V’=V,,, and put H "--L- [H, H]. For x, y e G, define
7(x, y)’-[x, y], 7(x, y)’-[7_(x, y), y], n--2, 3, 4, ...,

illductively, and take r subgroups X, i--1, .-., r, of G,
Xi "= (Tn(, ct) l<_]<_r, ]i, n=2, 3, 4,

Lemma 1. (1) G3. [Ht, Hl] X [H, H] for i= l, r
(2) If iq=], then Xic[H,H] and Xt(XcH
(3) X([Ht, Hi]=-Xi(H and Xt.[HI, Ht]/[Ht, Ht]Xt/XtH for

i---l, ...,r.

Proof. Put W--G/[Ht, H] for a fixed i. Since Ht contains G.--[G, G]
by definition, every coset a.[H,H] with n=/=i commutes with each of
commutators o W. If mi and n:/=i, then [a, a] e [H, H]. Thus W=
[[W, W], W] coincides with X. [H, H]/[H, H]. Since W-G. [H, H]/
[H, H], we have (1) of the lemma. If i=/=], then we see e H and [a, ]
eGH for each m; hence we have X,[H,H]; we obtain, therefore,
X,XH because X[H,H] for every n:/=]. The assertion (2) is
proved..(3) is clear because X,c[H,,H] for every n4=i as we have seen it.

Proposition 2. Let the notation be as above and denote the natural
projection of G onto G/H by . Then r subgroups (Xt), i---1,...,r,
form a direct product in the abelian group n(G)--G.H/H.

Proof. We see by (2) of the lemma that the subgroup

is contained in [H, H] and hence by (3) that
X <X[ l<_j<_r, ]=/=i>.HcH

for each i--I,..., r. It is apparent that this implies the proposition.
4-2. For each i, l<i<r, put

M "= (c, ..., ci, c(i)/’() c()/()} G
Proposition 3, Let the notation be as above. Then [or each i=1,

.,r, we have
( 1 ) Im Vt G/[Hi, H]= Vt(M) and Ker V
(2) [G" Mt]=[ImVt"
Proof. For the proof of this proposition, we may assume that

[Hi, Hi]--1 for simplicity by replacing G, H,, etc. with their images in the
quotient group G/[Ht, Ht]. Then Ht is a normal abelian subgroup of G.
Put a’=a,. Since G/H, is a cyclic group and generated by c, we have
Vi(l)=a, q" =(i), and for x e Hi,

V,(x) x<"> x r,(x, ) r(x, )(0 r(x, ),
where Tr (a}=a-+aq-+... +a+l. (Cf. [3], Lemma 2.) Hence we see
Im V. G/G2 (aL, ", aq) G/G, and [Ira V. G./G[= ]C 1. It is then clear
that Im V G=V(M). Since we have [G" M]=[Im V" V(M)], we con-
clude Ker VcM. The proof is completed.

5. We now see consequences of the condition (B).
Lemma 2. Under the condition (B), we have, for each n_ 1,

g=g(-1) mod Gn+ for g e G.
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Hence, in particular, we have - for nlG=G+ G/ and G/=G/.G/
We may easily prove the former half in a straightforward way by mathe-
matical induction on n because it is sufficient to show the case of g=[h, ]
with h e G_ and a e G for n2 (cf. [3], Lemma 3). The latter half fol-
lows rom the ormer because p is odd and we have x--x/. x- or z e G.

Proposition 4. Let the notation be as in 4, and suppose that the
condition (B) is satisfied. Then we have

V(M)--Im V G/[H, H]X-. [H, H]/[H, H]
for i--1,..., r where o is the automorphism of (B).

Proof. For a finite (}-module A of odd order, apparently we have
A=A-.A/ and A-A/=I. Hence by (1) of Lemma 1 and (1) of
Proposition 3, it is sufficient to show that

Im V G/[H, H]cG-. [H, H]/[H, H].
We have V(g)--V(g) for each g e G by Proposition 4 in 2 of [2].
Hence on the one hand, we have V(g)--V(g-)--V(g)-. Suppose that
V(g) belongs to G/[H,H]. Then by the preceding lemma, we have
V(g)-= V(g)w, w e G. [H, H]/[H, H], on the other hand. Therefore
we see V(g) belong to G.[H,H]/[H,H], and hence so does V(g) be-
cause they are in a p-group for an odd prime p. As we mentioned it at the
beginning of the proof, G is decomposed into a direct product of G-and G/. Since V(g)=V(g)-, we hve V(g) e G-. [H, H]/[H, H].
The proof is completed.

Theorem :. Let k be a quadratic number field and suppose that r--
p-rank (C)_2, C=CI()(k). Let the notation be as above and K/k the max-
imal unramified cyclic extension fixed by the subgroup H/[G, G] of Gal (//k)
for i= l, r. Then we have
1 )

( 2 ) IVl>_= IV" C"]/]Ker ]/l.
Proof. The first assertion is apparent from Theorem 1 and its corol-

lary. By Proposition 2 we see iGl greater than or equal to the product of
the orders of (X), i=1,...,r; each of them is not less than V(M)
because of (3) of Lemma 1, (1) of Proposition 3, and Proposition 4. The
degree [K’k] is equal to (i) by definition. Hence it easily follows from
(2) of Proposition 3 that V(M) is equal to the i-th term of the right
hand side of (2) of the theorem. The proof is completed.

Proposition . Under the same situation as in Theorem 3, we have
p-rank (CI() (k))>p-rank (C/ C) +p-rank (G-)

() +
__

0-rank (V(M)).

Proof. By Lemma 2, we easily see G--G- and G/=G/G/.
Since G/ G-=I, the p-rank of G is the sum of those of G/ and of
G-. The p-rank of G/ is not less than p-rank(CAC) because G=
G/.G by Lemma 2. The first ineqality is proved. It is easy to see
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that we have p-rank(CAC)--’2). It is also apparent by Proposition 2 that

G-.H/H contains a direct product of (X-), i--l, ...,r. By (3) of
Lemma 1 and Proposition 4, we see that each u(X-0 contains a subgroup
which is isomorphic to ’V(M). The latter inequality of Proposition 5 is
now also clear.

6. Finally we complete the proof of Theorem 2. Suppose that k is
an imaginary quadratic number field. Then G=Gal (/k) satisfies both of
the conditions (A) and (B). Therefore, in particular, we have Ker,/
=[gi" ]=e(i)=pe. It is clear by definition that we have

[C" C:]/Ker ]/]=[C. C(]/(i).
Let a, i= 1, ..., r, be a basis of C such that the exponent of a is equal to
e(i). Then we easily see

[C" C()]/(i)=iaAC.
Since aAC is a direct product of (aAa[lni) and (aAa[inr)
for i= 1, ., r, we have= [C" C{)]/s(i)=iCACI.
Hence (1) and (2) of Theorem 2 immediately follow from Theorem 3. The
assertion (3) of Theorem 2 follows from (4) of it and Proposition 5 at
once. We only need, therefore, to show the final assertion (4). By defini-
tion, the quotient M/G is of type ((1), ...,e(i--1), (i), ..., (i)) here we
have r-i+1 copies of e(i). It follows fromthe condition (A) that the
order of the quotient group Ker V/G is equal to (i). It is apparent,
therefore, that the least possible number for p-rank (V(M)) is equal to

r-- max {n e +... +ee}.
Hence by Proposition 5 we obtain the former inequality of our (4). For
i= 1, we have r--max {n e +. +e,e}=r- 1. For i>l, however, we
have r-max{ne+...+enge}r-i+l. We see, therefore, the latter

  eorem -.
2 is completely proved.
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