A Note on a Deformation of Dirichlet's Class 15. Number Formula

By Shigeru KATAYAMA

College of Engineering, Tokushima Bunri University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1992)

§ 0. Introduction. In [3], Prof. T. Ono obtained interesting results from a deformation of Dirichlet's class number formula for real quadratic fields $Q(\sqrt{p})$, where p is a prime number of the form p=4N+1. In [2], the author gave a similar deformation in the case where p is a prime number of the form p=4N+3.

After the completion of [2], the author found that Dirichlet had already given a deformation of the class number formula for binary quadratic forms ([1], § 107-§ 110 and § 138-§ 140), which is, however, somewhat complicated. The purpose of this note is to give a more simple formula for any real quadratic field using the same methods as [2] and [3]. To be more precise, let m be a square-free positive integer, ε the fundamental unit >1 of the real quadratic field $Q(\sqrt{m})$ and h the class number of $Q(\sqrt{m})$. We denote by d the discriminant of $Q(\sqrt{m})$. The discriminant d is written in the form $d = P (\equiv 1 \mod 4)$, 4P or 8P, where P = 1 or $P = p_1 p_2 \cdots p_r (p_1, p_2, \dots, p_r)$ \dots, p_r are distinct odd prime numbers). ζ denotes a primitive dth root of unity. Let χ be a Kronecker character belonging to $Q(\sqrt{m})$, and $L(s,\chi)$ the corresponding L-series. As usual, we denote by ϕ the Euler function, and by μ the Möbius function. For the sake of simplicity, we denote $\phi(d)/4$ by v. For any integer $1 \leq t \leq v$, define τ_t by putting

 $\tau_t = \left(\left(\phi(d) / \phi(d/n) \right) \cdot \mu(d/n) - \chi(t) \sqrt{d} \right) / 2,$ where n = (t, d). We also define W as follows

 $W = \begin{cases} 0, & \text{if } d \text{ has at least two distinct prime factors,} \\ 1, & \text{otherwise.} \end{cases}$

Then our main theorem reads.

Theorem. With the above notations, we have

$$\sqrt{m^w} \varepsilon^h = 2 \sum_{j=0}^{v-1} d_j + d_v$$

Here d_1 are determined by the following recurrence relation.

$$jd_j = \sum_{t=1}^j \alpha_t d_{j-t} \quad (d_0 = 1, 1 \leq j \leq v),$$

where $\alpha_t = -\tau_t$.

§1. Dirichlet's formula. It is known that (cf. [4])

$$h\kappa = L(1, \chi), \text{ where } \kappa = \frac{\log \varepsilon^2}{\sqrt{d}} \text{ and } L(1, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n}$$

and
$$\sum_{r \mod d} \chi(r) \zeta^{nr} = \chi(n) \sqrt{d} \text{ (the Gauss sum).}$$

З

Therefore

$$\log \varepsilon^{2h} = \sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{r \mod d} \chi(r) \zeta^{nr} \right)$$
$$= \sum_{r=0}^{d-1} \chi(r) \sum_{n=1}^{\infty} \frac{1}{n} \zeta^{nr} = -\sum_{r=0}^{d-1} \chi(r) \log (1-\zeta^{r})$$

Then we consider two sets of integers

 $A = \{a \in Z ; 1 \leq a \leq d-1, \chi(a) = +1\}, \qquad B = \{b \in Z ; 1 \leq b \leq d-1, \chi(b) = -1\},$ and put

$$A(x) = \prod_{a \in A} (1 - x\zeta^a), \qquad B(x) = \prod_{b \in B} (1 - x\zeta^b).$$

It is easy to see

(1) $\varepsilon^{2h} = B(1)/A(1).$

 $\Phi_n(x)$ denotes the *n*th cyclotonic polynomial, that is, $\Phi_n(x) = \prod_{0 < i < n, (i,n)=1} (x - \zeta_n^i)$, where ζ_n is a primitive *n*th root of unity.

Then it is well-known that

$$\Phi_n(x) = \prod_{z|n} (x^z - 1)^{\mu(n/z)},$$

and one can easily show that

(2) $\Phi_d(1) = A(1)B(1) = m^w$ (cf. [5]). From (1) and (2), one gets

(3)
$$\sqrt{m^{W}}\varepsilon^{h} = B(1)$$

For the proof of our theorem, we have to determine the coefficients of B(x).

Lemma 1 (Newton's formula, cf. [1] § 139, [3] § 2). For any complex numbers a_i $(1 \le i \le M)$, we put

$$F(t) = \prod_{i=1}^{M} (1 - ta_i) = \sum_{j=0}^{M} b_j t^j.$$

Then

$$b_{j} = \frac{F^{(j)}(0)}{j!}, \quad and \quad jb_{j} = -\sum_{i=1}^{j} b_{j-i}S_{i} \quad (1 \le j \le M), \quad where \ S_{i} = \sum_{i=1}^{M} a_{i}^{i}$$

Put $A(x) = \sum_{j=0}^{2v} c_j x^j$, $B(x) = \sum_{j=0}^{2v} d_j x^j$.

Applying Lemma 1 to polynomials A(x), B(x), we get

$$jc_j = -\sum_{t=1}^{j} c_{j-t}\sigma_t$$
, where $\sigma_t = \sum_{a \in A} \zeta^{at}$, $(1 \le j \le 2v)$,
 $jd_j = -\sum_{t=1}^{j} d_{j-t}\tau_t$, where $\tau_t = \sum_{b \in B} \zeta^{bt}$, $(1 \le j \le 2v)$.

Lemma 2. A(x), B(x) are reciprocal polynomials, i.e.,

$$a_u = a_{2v-u}, \quad b_u = b_{2v-u}, \quad 0 \leq u \leq 2v \quad (\text{cf. [1]}).$$

Then, from Lemmas 1-2 and the equation (3) one gets

(4)
$$\sqrt{\overline{m^w}}\varepsilon^h = B(1) = \sum_{j=0}^{2v} d_j = 2\sum_{j=0}^{v-1} d_j + d_v.$$

Thus, to finish the proof of our theorem, we have only to determine the values of τ_i .

§ 2. The determination of τ_i . Next lemma is easily shown by the

59

Möbius's inversion formula (cf. [4] § 9, problem 2).

Lemma 3. Let f(n) be the sum of all the roots of $\Phi_n(x)=0$, then $f(n)=\mu(n)$.

In the following we consider two cases (i) (t, d) = 1 and (ii) $(t, d) \neq 1$.

(i) By Lemma 3, we get

$$\sigma_t + \tau_t = \sum_{x \in (Z/dZ)^{\times}} \zeta^{xt} = f(d) = \mu(d).$$

On the other hand, it is easy to see that

$$\sigma_t - \tau_t = \sum_{x \in (Z/dZ)^{\times}} \chi(x) \zeta^{xt} = \chi(t) \sqrt{d}$$
 (the Gauss sum).

Hence, we have

(5) $\tau_t = (\mu(d) - \chi(t)\sqrt{d})/2.$

(ii) In this case, it is easy to see $\sigma_t - \tau_t = \chi(t)\sqrt{d} = 0$. We put n = (t, d). Then ζ^{na} and ζ^{nb} are primitive (d/n) th roots of unity, each of which appears $\phi(d)/\phi(d/n)$ times. Then, by Lemma 3 we see that

 $\sigma_t + \tau_t = (\phi(d)/\phi(d/n)) \cdot \mu(d/n).$

Hence one gets

(6)

 $au_i = (\phi(d)/\phi(d/n)) \cdot \mu(d/n)/2.$

By unifying (5) and (6), we have

$$\tau_t = ((\phi(d)/\phi(d/n)) \cdot \mu(d/n) - \chi(t)\sqrt{d})/2.$$

Hence we have shown our main theorem in $\S 0$.

§ 3. Some illustrations. (1) The case d=33 (m=33). Then one has $\phi(33)=20$, v=5, W=0.

Put $\omega = (1 + \sqrt{33})/2$, then $\omega^2 = \omega + 8$.

For t=1 to 5, $\chi(t)$, α_t and d_t are as follows.

t	0	1	2	3	4	5
$\chi(t)$		+1	+1	0	+1	-1
α_t		$\omega - 1$	$\omega - 1$	1	$\omega - 1$	-ω
d_{ι}	1	$\omega - 1$	4	$\omega + 2$	2ω	7

Hence $\varepsilon^{h} = 2(d_{0} + d_{1} + d_{2} + d_{3} + d_{4}) + d_{5} = 23 + 4\sqrt{33}$.

On the other hand, $\varepsilon = 23 + 4\sqrt{33}$. Hence h = 1.

(2) The case d=60 (m=15). Then one has ϕ (60)=16, v=4, W=0. Put $\omega=\sqrt{15}$, then $\chi(t)$, α_t and d_t are as follows.

t	0	1	2	3	4
$\chi(t)$		+1	0	0	0
α_t		ω	1	0	-1
d_{ι}	1	ω	8	3ω	13

Hence $\varepsilon^{h} = 2(d_{0}+d_{1}+d_{2}+d_{3})+d_{4}=31+8\sqrt{15}$.

On the other hand, $\varepsilon = 4 + \sqrt{15}$. Hence h = 2.

(3) The case d=8 (m=2). Then one has $\phi(8)=4$, v=1, W=1, $\alpha_1=\sqrt{2}$, and $d_1=\sqrt{2}$. Hence $\sqrt{2}\varepsilon^n=2+\sqrt{2}$. On the other hand $\varepsilon=1+\sqrt{2}$. Hence h=1.

Acknowledgment. I thank Dr. Shin-ichi Katayama for bringing [1] to my attention and for his useful comments.

References

- [1] P. G. L. Dirichlet and J. W. R. Dedekind: Vorlesungen über Zahlentheorie. Braunschweig (1894).
- [2] S.-G. Katayama: On a deformation of Dirichlet's class number formula (to appear in Res. Bull. of Tokushima Bunri Univ., vol. 42).
- [3] T. Ono: A deformation of Dirichlet's class number formula. Algebraic Analysis. vol. II, Academic Press, Boston, MA, pp. 659-666 (1988).
- [4] T. Takagi: Lectures on Elementary Number Theory. Kyoritsu, Tokyo (1931) (in Japanese).
- [5] ----: Algebraic Number Theory. Iwanami, Tokyo (1935) (in Japanese).