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0o Introduction. In [3], Prof. T. Ono obtained interesting results
from a deformation of Dirichlet’s class number formula for real quadratic
fields Q(/-), where p is a prime number of the form p--4N+ 1. In [2],
the author gave a similar deformation in the case where p is a prime
number of the form p=4N+ 3.

After the completion of [2], the author found that Dirichlet had al-
ready given a deformation of the class number formula for binary quad-
ratic forms ([1], 107- 110 and 138- 140), which is, however, somewhat
complicated. The purpose of this note is to give a more simple formula
for any real quadratic field using the same methods as [2] and [3]. To be
more precise, let m be a square-free positive integer, e the fundamental
unit 1 of the real quadratic field Q(/) and h the class number of QQ/).
We denote by d the discriminant of Q(/). The discriminant d is written
in the form d=P (=__1 mod 4), 4P or 8P, where P-1 or P=pp...p(p, p,
.., p are distinct odd prime numbers). denotes a primitive dth root

of unity. Let Z be a Kronecker character belonging to Q(/), and L(s, Z)
the corresponding L-series. As usual, we denote by the Euler function,
and by / the MSbius function. For the sake of simplicity, we denote
(d)/4 by v. For any integer lt<=v, define rt by putting

r=(((d)/(d/n)).l(d/n)--(t)/-d)/2, where n--(t, d).
We also define W as follows

0, if d has at least two distinct prime factors,W=
1, otherwise.

Then our main theorem, reads.
Theorem. With the above notations, we have

/- 2 d+d.
Here d are determined by the following recurrence relation.

]d= atd_t (do=l,
t=l

where at
1. Dirichlet’s formula. It is known that (cf. [4])

logh=L(1, ), where --- and L(1, Z) Z(n)

and Z(r)=Z(n)/- (the Gauss sum).
rood d
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Therefore

log= L ( E z(r))
n-I n mod d

d-1 1z(r) F, z(r) og (--
r=O n=l n r=o

Then we consider two sets of integers

A={aeZ; l_a=d-l,Z(a)=+l}, B={beZ; lgb=d--l,Z(b)=--l},
and put

A(x)= l-I (1- x), B(x)= [I (1- x).
aA bB

It is easy to see
( 1 ) 2 B(1)/A(1).

(x) denotes the nth cyclotonic polynomial, that is,
(x)= 1-I (x--), where ,, is a primitive nth root of unity.

O(in, (in) =1

Then it is well-known that
(x) 1-[ (x- 1)"/),

and one can easily show that
(2) (1)=A(1)B(D=m" (cf. [5]).
From (1) and (2), one gets
( 3 ) /--e B(1).
For the proof of our theorem, we have to determine the coefficients of
B(x).

Lemma 1 (Newton’s formula, cf. [1] 139, [3] 2). For any complex
numbers a (I<_i_<M), we put

M M

F(t) I-[ (1-- taJ bt.
i=1 =0

MF()(O) and ]bj bj_St (I<]=M), where St a.
2v 2v

Put A(x) cx, B(x) dx.
j=o =0

Applying Lemma I to polynomials A(x), B(x), we get

]cj=-- cj_tat, where a= , ’, (1]=<2v),
t=l aA

jd---- d_trt, where re= t, (1]2v).
t=l bB

Lemma 2. A(x), B(x) are reciprocal polynomials, i.e.,
a=a_, b=b_, Ogug2v (cf. [1]).

Then, from Lemmas 1-2 and the equation (3) one gets
2v v-1

( 4 ) e=B(1) Z d=2 d+d.
j=o =o

Thus, to finish the proof of our theorem, we have only to determine the
values of

2. The determination of v. Next lemma is easily shown by the

Then
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MSbius’s inversicn formula (cf. [4] 9, problem 2).
Lemma 3. Le f(n) be he sum of all $he roos of q(x)--O, $hen f(n)

=p(n).
In the following we consider two cases (i) (t, d)=l and (ii) (t, d)ve 1.
(i) By Lemma 3, we get

at+rt-- >, t--f(d)--l(d).
x (Z/dZ)

On the other hand, it is easy to see that

at-vt-- Z(x)’t-Z(t)/-- (the Gauss sum).
xe (Z/dZ)

Hence, we have
( 5 ) r (/(d)-- Z(t)/-)/2.

(ii) Inthiscase, itiseasytoseeat--r=Z(t)/-=O. We put n=(t,d).
Then ’ and are primitive (d/n)th roots of unity, each of which
appears (d)/(d/n) times. Then, by Lemma 3 we see that

at + rt ((d)/(d/n)). l(d/n).
Hence one gets
( 6 ) rt--((d)/(d/n)), l(d/n)/2.
By unifying (5) and (6), we have

rt=(((d) /(d/n)) l(d/n)-Z(t)/ d )/2.
Hence we have shown our main theorem in 0.

3. Some illustrations. (1) The case d=33 (m=33).
has (33)=20, v=5, W=0.

Put o=(1+/-)/2, then w=w+8.
For t= 1 to 5, Z(t), a and dt are as follows.

t

z(t)

dt

+1

--I

+I 0

1

o+2

Then one

+1 -I

2o 7

Hence 2(do +d+ d2+d+d)+d 23+4/-.
On the other hand, =23+4/-. Hence h=l.
(2) The case d=60 (m=15). Then one has (60)=16, v=4, W=0.
Put (o=/i, then Z(t), a and d are as follows.

z(t)

0t

d

+1 0

0

3o

0

--I
13

Hence =2(d0+d+d+d)+d=31+8/-.
On the other hand, =4+/-. Hence h=2.
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( 3 ) The case d= 8 (m---2). Then one has (8)-- 4, v---- 1, W 1, a
J-, and d,--/-. Hence V =2+v. On the other hand --1+-.
Hence h 1.
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