15. A Note on a Deformation of Dirichlet's Class Number Formula

By Shigeru Katayama
College of Engineering, Tokushima Bunri University
(Communicated by Shokichi Ifanaga, m. J. A., March 12, 1992)

§ 0. Introduction. In [3], Prof. T. Ono obtained interesting results from a deformation of Dirichlet's class number formula for real quadratic fields $Q(\sqrt{p})$, where p is a prime number of the form $p=4 N+1$. In [2], the author gave a similar deformation in the case where p is a prime number of the form $p=4 N+3$.

After the completion of [2], the author found that Dirichlet had already given a deformation of the class number formula for binary quadratic forms ([1], § 107-§ 110 and § 138-§ 140), which is, however, somewhat complicated. The purpose of this note is to give a more simple formula for any real quadratic field using the same methods as [2] and [3]. To be more precise, let m be a square-free positive integer, ε the fundamental unit >1 of the real quadratic field $Q(\sqrt{m})$ and h the class number of $Q(\sqrt{m})$. We denote by d the discriminant of $Q(\sqrt{m})$. The discriminant d is written in the form $d=P(\equiv 1 \bmod 4), 4 P$ or $8 P$, where $P=1$ or $P=p_{1} p_{2} \cdots p_{r}\left(p_{1}, p_{2}\right.$, \cdots, p_{r} are distinct odd prime numbers). ζ denotes a primitive d th root of unity. Let χ be a Kronecker character belonging to $Q(\sqrt{m})$, and $L(s, \chi)$ the corresponding L-series. As usual, we denote by ϕ the Euler function, and by μ the Möbius function. For the sake of simplicity, we denote $\phi(d) / 4$ by v. For any integer $1 \leqq t \leqq v$, define τ_{t} by putting

$$
\tau_{t}=((\phi(d) / \phi(d / n)) \cdot \mu(d / n)-\chi(t) \sqrt{d}) / 2, \quad \text { where } n=(t, d)
$$

We also define W as follows

$$
W= \begin{cases}0, & \text { if } d \text { has at least two distinct prime factors, } \\ 1, & \text { otherwise } .\end{cases}
$$

Then our main theorem reads.
Theorem. With the above notations, we have

$$
\sqrt{m^{w}} \varepsilon^{h}=2 \sum_{j=0}^{v-1} d_{j}+d_{v} .
$$

Here d_{j} are determined by the following recurrence relation.

$$
j d_{j}=\sum_{t=1}^{j} \alpha_{t} d_{j-t} \quad\left(d_{0}=1,1 \leqq j \leqq v\right)
$$

where $\alpha_{t}=-\tau_{t}$.
§ 1. Dirichlet's formula. It is known that (cf. [4])
and

$$
h \kappa=L(1, \chi), \quad \text { where } \kappa=\frac{\log \varepsilon^{2}}{\sqrt{d}} \quad \text { and } \quad L(1, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}
$$

$$
\sum_{r \bmod d} \chi(r) \zeta^{n r}=\chi(n) \sqrt{d} \quad \text { (the Gauss sum) }
$$

Therefore

$$
\begin{aligned}
\log \varepsilon^{2 h} & =\sum_{n=1}^{\infty} \frac{1}{n}\left(\sum_{r \bmod d} \chi(r) \zeta^{n r}\right) \\
& =\sum_{r=0}^{d-1} \chi(r) \sum_{n=1}^{\infty} \frac{1}{n} \zeta^{n r}=-\sum_{r=0}^{d-1} \chi(r) \log \left(1-\zeta^{r}\right) .
\end{aligned}
$$

Then we consider two sets of integers

$$
A=\{a \in Z ; 1 \leqq a \leqq d-1, \chi(a)=+1\}, \quad B=\{b \in Z ; 1 \leqq b \leqq d-1, \chi(b)=-1\},
$$ and put

$$
A(x)=\prod_{a \in A}\left(1-x \zeta^{a}\right), \quad B(x)=\prod_{b \in B}\left(1-x \zeta^{b}\right) .
$$

It is easy to see

$$
\begin{equation*}
\varepsilon^{2 h}=B(1) / A(1) . \tag{1}
\end{equation*}
$$

$\Phi_{n}(x)$ denotes the nth cyclotonic polynomial, that is, $\Phi_{n}(x)=\prod_{0<i<n,(i, n)=1}\left(x-\zeta_{n}^{i}\right)$, where ζ_{n} is a primitive nth root of unity.
Then it is well-known that

$$
\Phi_{n}(x)=\prod_{z \mid n}\left(x^{z}-1\right)^{\mu(n / z)},
$$

and one can easily show that
(2) $\quad \Phi_{a}(1)=A(1) B(1)=m^{W} \quad$ (cf. [5]).

From (1) and (2), one gets
(3)

$$
\sqrt{m^{w}} \varepsilon^{h}=B(1) .
$$

For the proof of our theorem, we have to determine the coefficients of $B(x)$.

Lemma 1 (Newton's formula, cf. [1] § 139, [3] § 2). For any complex numbers $\alpha_{i}(1 \leqq i \leqq M)$, we put

$$
F(t)=\prod_{i=1}^{M}\left(1-t a_{i}\right)=\sum_{j=0}^{M} b_{j} t^{j} .
$$

Then

$$
\begin{gathered}
b_{j}=\frac{F^{(j)}(0)}{j!}, \quad \text { and } j b_{j}=-\sum_{t=1}^{j} b_{j-t} S_{t} \quad(1 \leqq j \leqq M), \quad \text { where } S_{t}=\sum_{i=1}^{M} a_{i}^{t} . \\
A(x)=\sum_{j=0}^{2 v} c_{j} x^{j}, \quad B(x)=\sum_{j=0}^{2 v} d_{j} x^{j} .
\end{gathered}
$$

Put
Applying Lemma 1 to polynomials $A(x), B(x)$, we get

$$
\begin{array}{lll}
j c_{j}=-\sum_{t=1}^{j} c_{j-t} \sigma_{t}, & \text { where } \sigma_{t}=\sum_{a \in A} \xi^{a t}, & (1 \leqq j \leqq 2 v), \\
j d_{j}=-\sum_{t=1}^{j} d_{j-t} \tau_{t}, & \text { where } \tau_{t}=\sum_{b \in B} \zeta^{b t}, & (1 \leqq j \leqq 2 v) .
\end{array}
$$

Lemma 2. $A(x), B(x)$ are reciprocal polynomials, i.e.,

$$
a_{u}=a_{2 v-u}, \quad b_{u}=b_{2 v-u}, \quad 0 \leqq u \leqq 2 v \quad \text { (cf. [1]). }
$$

Then, from Lemmas 1-2 and the equation (3) one gets

$$
\begin{equation*}
\sqrt{m^{w}} \varepsilon^{h}=B(1)=\sum_{j=0}^{2 v} d_{j}=2 \sum_{j=0}^{v-1} d_{j}+d_{v} . \tag{4}
\end{equation*}
$$

Thus, to finish the proof of our theorem, we have only to determine the values of τ_{t}.
§ 2. The determination of τ_{t}. Next lemma is easily shown by the

Möbius's inversicn formula (cf. [4] § 9, problem 2).
Lemma 3. Let $f(n)$ be the sum of all the roots of $\Phi_{n}(x)=0$, then $f(n)$ $=\mu(n)$.

In the following we consider two cases (i) $(t, d)=1$ and (ii) $(t, d) \neq 1$.
(i) By Lemma 3, we get

$$
\sigma_{t}+\tau_{t}=\sum_{x \in(Z / a Z) \times} \zeta^{x t}=f(d)=\mu(d)
$$

On the other hand, it is easy to see that

$$
\sigma_{t}-\tau_{t}=\sum_{x \in(Z / a Z) \times} \chi(x) \zeta^{x t}=\chi(t) \sqrt{d} \quad \text { (the Gauss sum) }
$$

Hence, we have

$$
\begin{equation*}
\tau_{t}=(\mu(d)-\chi(t) \sqrt{d}) / 2 \tag{5}
\end{equation*}
$$

(ii) In this case, it is easy to see $\sigma_{t}-\tau_{t}=\chi(t) \sqrt{d}=0$. We put $n=(t, d)$. Then $\zeta^{n a}$ and $\zeta^{n b}$ are primitive (d / n) th roots of unity, each of which appears $\phi(d) / \phi(d / n)$ times. Then, by Lemma 3 we see that

$$
\sigma_{t}+\tau_{t}=(\phi(d) / \phi(d / n)) \cdot \mu(d / n)
$$

Hence one gets

$$
\begin{equation*}
\tau_{t}=(\phi(d) / \phi(d / n)) \cdot \mu(d / n) / 2 \tag{6}
\end{equation*}
$$

By unifying (5) and (6), we have

$$
\tau_{t}=((\phi(d) / \phi(d / n)) \cdot \mu(d / n)-\chi(t) \sqrt{\bar{d}}) / 2
$$

Hence we have shown our main theorem in § 0 .
§ 3. Some illustrations. (1) The case $d=33(m=33)$. Then one has $\phi(33)=20, v=5, W=0$.

Put $\omega=(1+\sqrt{33}) / 2$, then $\omega^{2}=\omega+8$.
For $t=1$ to 5, $\chi(t), \alpha_{t}$ and d_{t} are as follows.

t	0	1	2	3	4	5
$\chi(t)$		+1	+1	0	+1	-1
α_{t}		$\omega-1$	$\omega-1$	1	$\omega-1$	$-\omega$
d_{t}	1	$\omega-1$	4	$\omega+2$	2ω	7

Hence $\varepsilon^{n}=2\left(d_{0}+d_{1}+d_{2}+d_{3}+d_{4}\right)+d_{5}=23+4 \sqrt{33}$.
On the other hand, $\varepsilon=23+4 \sqrt{33}$. Hence $h=1$.
(2) The case $d=60(m=15)$. Then one has $\phi(60)=16, v=4, W=0$.

Put $\omega=\sqrt{15}$, then $\chi(t), \alpha_{t}$ and d_{t} are as follows.

t	0	1	2	3	4
$\chi(t)$		+1	0	0	0
α_{t}		ω	1	0	-1
d_{t}	1	ω	8	3ω	13

Hence $\varepsilon^{h}=2\left(d_{0}+d_{1}+d_{2}+d_{3}\right)+d_{4}=31+8 \sqrt{15}$.
On the other hand, $\varepsilon=4+\sqrt{15}$. Hence $h=2$.
(3) The case $d=8(m=2)$. Then one has $\phi(8)=4, v=1, W=1, \alpha_{1}=$ $\sqrt{2}$, and $d_{1}=\sqrt{2}$. Hence $\sqrt{2} \varepsilon^{h}=2+\sqrt{2}$. On the other hand $\varepsilon=1+\sqrt{2}$. Hence $h=1$.

Acknowledgment. I thank Dr. Shin-ichi Katayama for bringing [1] to my attention and for his useful comments.

References

[1] P. G. L. Dirichlet and J. W. R. Dedekind: Vorlesungen über Zahlentheorie. Braunschweig (1894).
[2] S.-G. Katayama: On a deformation of Dirichlet's class number formula (to appear in Res. Bull. of Tokushima Bunri Univ., vol. 42).
[3] T. Ono: A deformation of Dirichlet's class number formula. Algebraic Analysis. vol. II, Academic Press, Boston, MA, pp. 659-666 (1988).
[4] T. Takagi: Lectures on Elementary Number Theory. Kyoritsu, Tokyo (1931) (in Japanese).
[5] -: Algebraic Number Theory. Iwanami, Tokyo (1935) (in Japanese).

