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83. A Note on Certain Infinite Products
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(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

1. Statement of result. Let M be a positive integer, 22 a real non-

principal primitive character modulo M, L(s, Z) the associated L-series
and exp(2zri/M). Given a sequence a(1), a(2), a(3),- of integers

such that a(n) 0 (nc) for some c > 0, we define, for Ira(z) > 0,
M-1

(1) f(z) exp(2zciaz) II II (1 q(2)") ">(>,
h=O n=l

where q(2) exp(2zciz/2), 2 > 0 and a is a real number. Then the infinite

product converges absolutely and uniformly in every compact subset of the

upper half plane H. Hence fx(z) is holornorphic in H. To state our theorem,
let (s) be a convergent Dirichlet series defined by

(s) , a(n) n

Theorem. Assume that (s) can be continued through the whole s-plane
as a non-zero meromorphic function with a finite number of poles and that there
exists a real number k such that
(2) fx(-- 1/z) (z/i) fx(z).
Then (//M) is an integer, a k 0 and fx(z) is given by
() f(z) II (mz)),

m (,/M)

where
M-1

h=O n=l

and c(m), defined for m dividing (2/M), are integers such that c(m)
Z(-- 1)c((2/M)/m) for any divisorm of (2/M) .

Conversely, let (//M) be an integer and let c(m), for integers m dividing

(/M), be arbitrary integers such that c(m) Z 1)c((//M)/m) for
any divisor m of (/M). Further, define fx(z) by (3). Then fz(z) satisfies
fz (-- 1 /z) fz (z).

Remark. In case / M, (z) coincides with r]a(Z ;z) which was
first defined in Katayama [1].

2. Lemmas. For anyy> 0, weput
G (y) {log fz (iy) + 2arty}.

Then from (1), we have

(4) G(y) T(Z) , z(m)a(n) exp(-- 2mnzry/2)
m=l n=l

where T(Z) is the Gaussian sum defined by
M-1

T(X) 2:(h).
h=O
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Put
e(s) T(Z) (2zr/)-Sy(s)(s)L(s + 1, X),

where F (s) denotes the gamma function.
Lemma 1. Let k be a real number. Then the next two conditions are equiva-

lent.

(A) fz (-- 1/z) (z / i) k fz (Z)
(B) (S) can be continued through the whole s-plane as a meromorphic

function satisfying (s) (-- s) and

(s) ++ 2ar l + s 1- ss
is entire and bounded in every vertical strip.

Proof. By (4) and Mellin’s inversion formula, we obtain

(5) G () 2rci _oo
(s) -s ds,

where v is chosen large enough to be in the domain of absolute convergence

of (s). Now assume (B). Then, shifting the line of integration in (5) to
Re(s) v and aplying (s) (-- s), we see that

2a
(6) G(y) G(1/y) 2ay + k log y,

Y
which yields
(7)
Therefore

which is (A).
Next, we note. that

log fx(i/y) k log y + logfx(iy).

k
f (i/y) y f (iv),

(s) G(y)ySdy

for Re(s) sufficiently large, where dy dy. It is easy to check that
Y

-sd(s) G (y)ySd y + G(1/y)y y.

Assuming (A), we have (7) for any y > 0, so that we get (6) for any y > 0.
Hence

( ) fl1 + 1 G() ( + d-s)e(s) +--+2arc 1 + s 1--ss
Then the assertion (B) follows at once by noticing that G(y) << exp(-- zry
/2) wheny_ 1.

Lemma 2. Let k be a real number. If (2) holds, then (s) satisfies the fol-
lowing four conditions.

(a)
function.

(b)
(c)

(d)

(s) can be continued through the whole s-plane as a meromorphic

s(s 1)(s)L(s + 1, X) is entire of finite order.

(2/M)S(s)L( s, X) X(-- 1) (,/M)-s( s)L(s, ).
kRes (s) T(,)L(1 ,)S=0
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and

4a:rRes (s) 2 T (2:)L(2 2:)"S=I

Proof Noting that (s) (-- s) is equivalent to (c) by the functional
equation for L(s, 2:), this follows easily from (B) of Lemma 1. So we omit the
proof.

3. Proof of the theorem. We prove the first assertion. By our assump-
tions, (s) satisfies the four conditions of Lemma 2. Hence, putting D (s)
(s)/L(s, X), D(s) can be continued through the whole s-plane as a mero-
morphic function of finite order and (2/M)SD(s) 2:(--1) (,/M)-SD
(-- s). Further, by (b), (c) and the assumption of (s), we see that D(s) has
a finite number of poles in the whole s-plane and D(-- s) O(I (//M) s I)
for Re(s) sufficiently large. Then we can deduce from Lemma 5 in (2) that

K

D(s) c(m)m-s,
where K is the integral part of (,/M) . By using the same argument as in
the proof of Lemma 6 in [2], we find that (,/M) is an integer and

D(s) , c(m)m-,
m l(2/M)

where c(m), for m dividing (,/M), are integers such that c(m):
2:(-- 1)c((//M)/m) for any divisor rn of (2/M) . Therefore we get

(8) (s)- ( c(m)m-S)L(s, 2:).
m[ (,/M)

Then it is easily verified that (s) is an integral function which is bounded
in every vertical strip and satisfies (s) (-- s). Hence, a k- 0 and

fz(z) is given by (3).
The remaining part of the theorem follows immediately from Lemma 1

since (s) is given by (8).
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