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In this paper we characterize the germs of algebraic subsets among the
germs of analytic subsets by validity of an inequality between orders and de-
grees for polynomial functions on them.

Throughout this paper K denotes the field C or/. Let S be a germ at 0
of an analytic subset of an open neighborhood of 0 K and Us,o(f) the
vanishing order of f K[a1, an] at 0 along S. To be accurate, if o c K
{al, an} is the analytic ideal of S at 0, m =- (al, an) c K {a1, an}
the maximal ideal at 0 and if f0 K{ax a} is the germ of fat 0, we put

s,o(f ) max{r N" fo tllr - 0}.
Theorem. Let S be a germ at 0 of an analytic subset of an open neighbor-

hood of 0 K. Suppose that S is irreducible and of positive dimension. Then
the following conditions are equivalent.

S is an analytic irreducible component of the germ of an algebraic subset.

(* *) There exists a It such that a deg f> s,o(f) for ay f K
[ax, a n] that does not vanish identically on S. Such an a must satisfy a >--_ 1.

We may replace s,o(f) in the above by the reduced order s,o(f)
limk_oo s,o(fk)/k (cf. [3]). Our theorem exhibits an analogy to Sadullaev’s
theorem [4] which characterizes the algebraic subsets by a growth estimate
of polynomial functions (cf. [1] for "analogy").

The complex case of () ===> (# ) is already known (a slight modifica-
tion of [1], Thin. A*, (2.1), where the author has carelessly omitted the
non-vanishing condition for f). The real case of ( * ===> * * easily fol-
lows from the complex case. Since Us,o(f) - degf holds for homogeneous f
which does not vanish identically on S, a

_
1 follows. Thus we have only to

prove (* *)===> (*).
Proof of(**) (*). LetJ K[ax an] be the ideal of all polyno-

mials which vanish on S. J defines the minimal algebraic subset " c Ksuch that its germ T at 0 includes S. Let p and q denote the dimensions of S
and T respectively. In complex case it is well-known that dim T- q. In real
case, the same equality follows from the following"

dim T dime Tc dime (TC) --> dim (TC) /n dim ;P ----> dim T,
where Tc denotes the complexification of T and the first equality follows
from [2], V, Prop.3. Let us put

A =-- K[a:l aCn], A {f A’deg f _-< k}, ] J A.
A/J is the set of the germs of polynomial functions on ’ of degree <= k.
We can naturally identify K with an affine chart of the projective space
KPn. Then, by the theory of Hibert polynomial applied to the closure of
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’ c KP’, there exists a polynomial of degree q such that dimK Ak/Jk
(k) for k >> 0. Let b denote the Samuel polynomial for the analytic local ring

s,0. It is known that deg q p.
Then we can find c> 0 such that (kq) < (ckp) for k >> 0 and

hence the canonical K=linear map Acp/Jcp-- s,o/n is not injective for
k >> 0, where n denotes the maximal ideal of s,o. Thus for any k >> 0, there

kq
kq.exists fe A, \J, such that fo m -+- io i.e. Ps,o (f) Note that f

does not vanish identically on S (otherwise, f ] N A --Jc, a contradic-

tion).
Suppose now that S is not an analytic irreducible component of T. Then

S is properly included in some irreducible component T’ of T and p dimK
S < dim T’

_
direr; T-- q by [2], ]]], Prop.7. Therefore, for any a > 0, we

have a’ck
p < k for k>> 0. Then ($ $) contradicts the existence of f

above. This comletes the proof of $ $ :::> $ ).
Let us put
c (S, 0) lim sup sup{log s,0(f)/log deg f" f e A \J}.

The inequality cr (S, 0)

_
1 holds by the same reason as a > 1 above. If S

is algebraic (i.e. S is an analytic irreducible component of an algebraic germ),
the implication (*)(* *) implies that cr (S, 0) & 1. Therefore cr (S, 0)

1. Conversely, Suppose that S is not algebraic. The proof above implies
that cr (S, 0)

_
q/p > 1. Thus cr (S, 0) measures transcendency of S along

with q/p.
Example 1. Let us define irreducible germ S of an analytic subset of

K by the equation y- xe Then ]- 0 and
2. k k-1 k

1;x, y;x ,xy, y ;x ,x y y
form a K-basis of A. Their images in gYs,o are represented by

x. x 2x. x k 2x x K{ y}1,x, xe ,x ,x e ,x e ,...,x ,x e ,x e ,...,x e x,
These are independent solutions of the ordinary differential equation
(D(D 1) (D 2)" (D k)} +f- 0. Let f be a linear combination of
these solutions. If )s,o(f) - (k + 1) (--the order of the differential equa-

tion), f:--0 by the uniqueness of solution. In other words, f A \ (0}
A\] implies Ps,o(f) (k-t-1) 2. This proves that o(S, 0)_ 2. Since
o (S, O)

_
q/p 2 follows from the above, we have c (S, 0) 2.

Example 2 (T. Ueda). Let n, n2, n,... N be an increasing series
__+ 2 i!)such that log ni+l/log ni oo (e.g. n andcl, ca, ca K a series

such that the radius of convergence of f (x) c x’’ is infinite (e.g. c
1/ni!). Let us put i=- {(x, y) y- f(x)}, fk(x) E iXn’.

i=l

(f is an entire function and is a closed analytic subset of K’.) Then deg
(y- f) n and "s,o(Y- f) n+ and we have

c(S, 0) lim log n+/log n c > 2- q/p.
Thus c(S, 0) is more sensitive than q/p as a measure of transcendency.
The author does not know when c(S, 0) is finite.

Let be a closed irreducible analytic subset of Kn. The author does not
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know whether c(Sv, P) (defined in an obvious manner) is always indepen-
dent of P and local irreducible component /e-
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