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1. Introduction and result. In [8] Miles derived the following system
(SP). It describes the motion of a lightly damped spherical pendulum, which
is forced to oscillate horizontally in the neighborhood of resonance"

3dP Pl ( +-) qldt -Mp,
a__ q / E\ 3

(SP)

dt

where a > 0 and p R represent a damping coefficient and a frequency
offset, respectively. Here (t), q(t), pe(t), q(t)) denotes slowly varying
amplitudes of degenerate modes 1 and 2 in a four dimensional phase space,
and we have set E E(t) "= p(t) + q(t) + p(t) + q(t) , M- M(t)
"= p,(t)q(t) p(t)q(t).

The aim of this paper is to estimate an upper bound for the dimension
of X analytically. Basically we make use of the Kaplan-Yorke formula. This
formula connects the upper bound with the Lyapunov exponents. This was
conjectured by Kaplan and Yorke [7] and proved by Constantin and Foias

[1]. In Eden, Foias and Temam [4], this enables to estimate the dimension of a
global attractor for the Lorenz system. (SP) consists of four equations
unlike the Lorenz system. We therefore adopt the technique used in Ishimura
and Nakamura [6].

Now we stae our main result.
Theorem. Let X be the maximal compact invariant set of (SP). Let dim

denote the Hausdorff dimension. For any p R, we have the following"

(i) If O < a3 <-- , then

dime(X) _< 3 +

(ii)

dim(X) _< 2 +

a +1

16a + 9

8a + 1
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(iii) If- < a -- 1, then

8c3 + 8
dime(X) <_ 1 +

8cr3 1
(iv) If 3 1, then X is a linearly stable invariant set.
Remark that Lemma 2.4 enables us to obtain this above X in a general

theory of dynamical systems. (For example we vefe to Temam [11].) In
forthcoming paper [5], we shall study a moe general system analytically and
numerically.

2. Sketch of the proof. We first ecall some notations and known
sults concerning the Lyapunov exponent and the Hausdorff dimension. For
the poof and other properties, we refe to texts of Eden, Foias and Temam
[4], Constantin and Foias [2] and Ladyzhenskaya [8].

Let (S(t)}t0 be a C-semigroup of injective operators acting on a

separable Hilbert space H. We assume that there exists a compact set X
such that S(t)X X fo all t 0. For all uo X we assume that there ex-

ists a compact linear oprator S’(t, uo) on H satisfying

S(t)u- S(t)Uo- S’(t, Uo)(U,- Uo) c(t)o(llu,- Uo II),
for some nondecreasing function C (t).

We define/2i(Uo)’S and t2i’s as follows:
1(/zl +/2. + +/n) (u0) "= lim sup - log

t--oo

N

sup A S’(t, Uo)Vo, II,

t21 + 2 + +/2t lim sup sup log sup A (t, Uo)Vo
t-.oo uoX I1^.1 Voll i=1

Here A means the exterior product. Remark that ’s are called global
Lyapunov exponents and (Uo)’S local Lyapunov exponents.

We next recall the definition of the Hausdorff dimension: Let X be a

compact subset of H. We set

.(X)’=inf r "r < e X U =B,, k
i=l

Here B, denotes the ball with radius r. ,(X) is a nonincreasing

function of . So we can define

a(X) := sup a,(X) lim a,(X).
>o o

The Hausdorff dimension dimW is then given by

dim := inf{d > 0; a(X) 0}.
Now we present the Kaplan-Yorke formura, which will be the main in-

gredient of the proof.
Theorem 2.1 (Kaplan-Yorke formula). Let N be the first integer such

that
( + + + + +x) (Uo) 0

for all uo X. Then we have

dim(X) < sup {N + (a + g + + a)(u0)

Corollary 2.2 (Constantin, Foias and Temam [3; Theorem 3.3]). Suppose
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lul + lU2 + + I + I+ < O, Then we have

dime(X) < N + / +/ + + #

We next state several lemmas needed for a proof of our main theorem.
At uo @, q, p, q) , the matrix L for the linearized system of (SP)
is given by

L (L),
where

1 3 (E8) 1 .L a -pq -p2q2, LI2 + - q + Pz,

L Pq Pq, L4 4 qq P’

L: (+) +p q, L: --a+pq +pq,

5 1

1 a () 1La pq q, La + q + ,
1 5

La u+ + q, L + pq + pq.

Let S(t) denote the solution operator for (SP); i.e. S(t)Uo u(t) for
the initial value uo /4. We consider the solution vi(t)= S’(t, Uo)Vo
(i 1,2,3,4) of the eqation

(2.1) dt
v(0) Vow.

Invoking Lemma 3.5 in Constantin and Foias [2] for our situation, we
get the following equation:

d 2(trL) lv A v2 A v A v, [2(2.2) dt lV A v/x v/x v,

(2.3)

From (2.2) and the definition of the Lyapunov exponent, we have

P +P2 +p +p4= --4or < 0.
Let {ei} = denote the standard basis for/4. And we set

4

v(t) Z v(t)e (i 1,2,3,4).
=1

Then we have the following.
Lemma 2.3. Suppose that each v sotves the equation (2.1), then we have

(2.4)
d
dt V /x v. /x v

_
2 (- 3a + E) v/x v /x v ,

d-Tlv A v _< 2 2or + E Iv1 A v2 [2(2.5)
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(2.6) dt Vx < 2(- a + E) v
Now we shall state the asymptotic behavior of a solution of (SP). Any

solution of (SP) has the following property"
Lemma 2.4. Let (pl(t), ql(t), p2(t), q2(t)) denote any solution of (SP).

Then for any e > O, there exists to to(e) > 0 such that for any t > to

[E(t) l< l__;+e.
Especially suppose that (Pl(t), ql(t), p.(t), q2(t)) X, then we have

E (t) <- 1___ for any t > O.

Here X is a compact global attractor.
Now we can prove our main theorem. It follows from Lemmas 2.3, 2.4

and the definition of the Lyapunov exponent that for each Lyapunov expo-
nent t2i of X, we have the following"

1
(2.7) P + 2 + P3 < 3c -t-

2

9
(2.8) t2 + p. -< 2c +

8a,2’

1
(2.9) /21 _< cr + 2"

By Corollary 2.2 and (2.7)-(2.9), we obtain our theorem. Indeed, sup-
pose t21 + t2. + P3 <- M for some M R. When M _> 0, then [p41 --P4
=/21 +/22 +/23 + 4c. Invoking Kaplan-Yorke formula, we have

dime(X) < 3 + //1 -4.-/-/2 + /-/3 < 3 + M
a, 4or + M"

When M < 0, we have g -I- gz -4- pa < M < 0. Then we can go to the next
step. Here suppose gl -4- g. < N for some N R. When N > 0,

+2<_2+ Ng, f3 M + N"dimly(X) 2 +
When N < 0, we have 1 4- P2 <- N < 0. Then we can go ahead again. Here
suppose Plg K for some K R. When K 2 0,

Kdim(X) g 1 + --N+K"
When K < 0, we have Pl < 0. X is therefore linearly stable.

By (2.7)-(2.9) we can choose M: --3c + l__g, N. 2c--

and K := a 4- - to obtain our theorem.
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