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68. On the Pro-p Gottlieb Theorem

By Hiroaki NAKAMURA

Department of Mathematics, University of Tokyo
(Communicated by Shokichi IYANAGA, M.J. A, Nov. 12, 1992)

The purpose of this note is to present a remark on center-triviality of
certain pro-p groups. We shall show the following

Theorem 1. Let p be a rational prime, G a pro-p group, and F, the trivial
G-module of order p. Suppose that the following three conditions are satisfied.

(1) - ¢d,G=n < o,
(2) H'(G, F,) is finite fori 2 0,
(3) > (- 1)' dimH'(G, F,) # 0.

i
Then each open subgroup of G has trivial centralizer in G. In particular, the cen-
ter of G is trivial.

Observing that the conditions (1)—(3) are inherited by any open sub-
group of G, we see that we may prove just the center-triviality of G. The
proof is divided into two steps.

Step 1. Let A = Z,[[G]] be the complete group algebra of G over the
ring of p-adic integers Z,. Then A is a local pseudocompact ring whose
unique open maximal ideal R is the kernel of the canonical augmentation
A— Z/pZ. The following ‘Nakayama lemma’ due to A. Brumer [1] plays a
crucial role in this step.

Lemma 2 (Brumer). Let A be a pseudocompact ring with radical R, M a
pseudocompact A-module, and let x,, .. .,x,, € M. If M/RM is (topologically)
generated by the images of Xy, . . ., Ty, then M = Az, + -+ + Az,

Proof. See [1] Corollary 1.5.

It is remarkable that, in contrast to the usual Nakayama lemma, the
above Brumer’s lemma does not assume the finite generation of M as a
A-module, but does imply it.

Lemma 3. Let G be a pro-p group satisfying the conditions (1),(2) of
Theorem 1. Then the trivial A-module Z, has a finite free resolution :

F): 0—-F,—F, ,— -—F—Z,—0,
where each F; is a free A-module of finite rank (0 < i < n).

Proof. We shall follow an argument in Gruenberg [3] 8.1 carefully in

our context.

1°. We first show by induction on N = 1 that there is an exact sequence
of A-modules

Ay : 0 Ky—Fy_,——F,—~Z,—0,

in which F; (0 < ¢ < n — 1) are free of finite ranks and Ky is arbitrary. If
N =1, then we can take as F, = A, K; = the augmentation ideal of A. So
we assume that the exact sequence (Ay) is obtained. To obtain (Ay,,), it suf-
fices to show that K, in the sequence (A,) is finitely generated. As the
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category of pseudocompact A-modules is enough projective [1], we get the
exact sequence
Homg(Fy_,, F,) = Homy(Ky, F,) — Extf,v(Z,,, F,) — 0.
Here Hom, denotes the continuous G-homomorphisms. Moreover, by [1]
Lemma 4.2, we have Extﬁ'(Z,,, F,) = HN(G, F,). Since the first and the
third terms are finite, Hom;(Ky, F,) turns out to be a finite set. From this
the finiteness of Ky/RK, follows. Thus, by Brumer’s lemma, Ky is finitely
generated over A.
2°. From 1°, we get an exact sequence
cee —)Fn_'_l-—-)Fn——-)Fn_l-—» cee —-—)Fo-—>Zp—)()
with F; free A-module of finite rank (¢ = 0). We claim that K := Image(F,
— F,_)) is a projective object as a pseudocompact A-module. For this, it
suffices to show that for every short exact sequence 0 > A— B— C— 0 of
finite A-modules, the induced map Homg;(K, B) — Hom (K, C) is surjec-
tive ([1] Proposition 3.1). We have an exact sequence
Hom(F,_,, B) — Homy,(K, B) — H"(G, B) — 0
1 1 |

Hom(F,_,, C) — Homy (K, C) — H"(G,C) — 0,

and the first and the third vertical arrows are surjective. (Use the condition
(1) of Theorem 1 for the latter.) Thus our assertion follows.

3°. Since the above K is obviously finitely generated, it remains to show
the freeness of K. We can choose x;, .. .,r, € K such that the images
Z,(1=1,...m) in K/RK form a basis. Then by Brumer’s lemma, we get

K=Ax, + -+ + Ax,,.
Define F, to be D)., Ax,, and let @ be the kernel of the canonical projection
F— K. Then since K is projective, F is A-isomorphic to K @ Q. Therefore
F/RF = K/RK® Q/RQ.

Comparing the dimensions (< ), we get @/ RQ = 0. It follows from Brum-
er’s lemma again that @ = 0. Thus K is free of finite rank.

Step 2. We next apply the argument of J. Stallings [6] in our profinite
context. This method was previously considered in [5] for giving a simple
criterion for center-freeness of certain profinite fundamental groups of
algebraic varieties (see Remark 2 below).

We first begin by an arbitrary profinite group G. For an open normal
subgroup U of G and a positive integer a, let T(Z/p°Z[G/U]) denote the
quotient of the group algebra Z/p“Z[G/U] by the submodule generated by
the zy — yx (x, y € Z/p°Z[G / Ul). Then the canonical projections

Ty, Z/p°ZIG/Ul— T(Z/p°ZIG/Ul) (n>0, U< G :open)
form an inverse system of surjections of finite abelian groups. Taking the
inverse limit, we obtain a profinite abelian group T (Z,[[G]]) together with
a continuous surjective homomorphism

T :Z,[[G]] — T (Z,[IG]])
such that TA + ) = T(A) + T(w), T(Aw) = T (@A) for A, u € Z,[[G]].
Each element of T (Z,[[Gl]) may be viewed as a Z,-valued measure on the
space of the conjugacy classes of G. (See [5] §1.3 for a little more leisured
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construction of the ‘profinite Hattori-Stallings space’ T(Z,[[G]]).) We let
A= z,lIG]].

Definition. Let P be a finitely generated projective pseudocompact
A-module and let f : P— P be a A-endomorphism. We define the profinite
Hattori-Stallings trace tr (f) € T(A) as follows. Choose a pseudocompact
A-module Q with PD @ = A®™ for some m € N, and let f = (f, 0) : A®"
— A®”™ be the 0-extension of f Let (f_i,) € M, (A) be the matrix representa-
tion of f and define t7(f) = X7, T(f,). It is easy to see the well-
definedness of #7(f) and the properties tr(f+ g) = tr(f) + tr(g),
tr (fg) = tr(gf) for two A-endomorphisms f, g of P.

Lemma 4. Let G be a profinite group, and p be a prime number. Suppose
that the trivial A-module Z, has a finite free resolution

(F):0—F,— - —F—>F,—>2Z,—0,
where F;(1 < 1 < n) are finitely generated free A-modules, with Euler charac-
teristic ¥ 1= 2 (— l)imnk(F,.) # 0. Then G has trivial center.

Proof. This is Theorem 1.3.2 of [5]. We repeat the proof briefly for the
convenience of the reader, which is just a profinite modification of Stallings
[6]. Let 7 be any central element of G, and consider two A-endomorphisms
(f), (g,) of the complex (F) such that f; = identity and g; = multiplication
by 7 on F; for t = 0,...,n By standard argument in homology theory, we
can construct a chain homotopy between (f;) and (g;) to obtain

0=Z(—=D'tr(f) — Z(—D'tr(g) = x (6, — 5,).
Here 8, (resp. 0,) is the Dirac measure supported at the conjugacy class {1}
(resp. {7}). Since x # 0, and since the (profinite) space of the conjugacy
classes of G is Hausdorff, we get v = 1.

Proof of Theorem 1. By Lemmas 3 and 4, we may just assure
> (— D'rank(F) = = (— 1)'dimH' (G, F,).
i i

But we know by [1] Lemma 4.2 that H'(G, F,) = Exty(Z,, F,). Here Ext,
is the 7-th extension group in the category of pseudocompact A-modules, and
can be computed from the resolution in Lemma 3 in the usual way. Thus our
assertion certainly follows.

Remark 1. A. Pletch (J. Pure and Appl. Algebra, 16) showed the exis-
tence of a finite free Z,[[Gl]-resolution of Z, for certain profinite groups G
including pro-p groups, in which some delicate arguments on duality theory
(due to P. Gabriel) were involved. In our proof of Lemma 3 above, we res-
tricted ourselves to the case of pro-p groups, and modified part of Pletch’s
argument along [3] to be able to avoid delicate discussion on duality theory.

Remark 2. The existence of finite free resolution of Z, can be also
assured for profinite groups isomorphic to the pro-€ completion of €-good
groups of type FL (€ : a ‘full’ class of finite groups containing Z/pZ). See [5]
1.3.3.

Application to Galois groups. Let k be a number field of finite degree
over the rationals, S a set of places of k containing those lying over a prime
b. Denote by kg(p) the maximal pro-p extension of k unramified outside S,
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and by Gy the Galois group Gal(ks(p)/ k). Then it is known that the Euler
characteristic of Gg is equal to — 7, (#,: the number of complex places of k).
Therefore, by the above theorem, if k is not totally real, then G4(p) has tri-
vial center. This gives an alternative proof of Theorem 2.2 (1) of [7]. In [7],
Yamagishi also considered the totally real case, and showed that in that case
the centerfreeness of G is naturally related with the Leopoldt conjecture.

References

[1] A. Brumer: Pseudocompact algebras, profinite groups and class formations. J. of
Algerba, 4, 442—-470 (1966).

[2] D. H. Gottlieb: A certain subgroup of the fundamental group. Amer. J. Math., 87,
840-856 (1965).

[3] K. W. Gruenberg: Cohomological topics in group theory. Lect. Notes in Math.,
vol.143, Springer-Verlag (1970).

[4] H. Nakamura: Centralizers of Galois representations in pro-/ pure sphere braid
groups. Proc. Japan Acad., 67A, 208—210 (1991).

Galois rigidity of pure sphere braid groups and profinite calculus (to
appear).

[6] J. Stallings: Centerless groups — An algebraic formulation of Gottlieb’s theorem.
Topology, 4, 129—-134 (1965).

[7] M. Yamagishi: On the center of Galois groups of maximal pro-p extensions of
algebraic number fields with restricted ramification (to appear in J. Reine Angew.
Math.).

[5]




