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68. On the Pro.p Gottlieb Theorem

By Hiroaki NAKAMURA
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(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1992)

The purpose of this note is to present a remark on center-triviality of
certain pro-/) groups. We shall show the following

Theorem 1. Let p be a rational prime, G a pro-p group, and F the trivial

G-module of order p. Suppose that the following three conditions are satisfied.
(1) cdG n < co,
(2) H (G, F.) is finite for i >- O,
(3) 2 (- 1) dimH(G, IZ) 4: O.

Then each open subgroup of G has trivial centralizer in G. In particular, the cen-

ter of G is trivial.
Observing that the conditions (1)-(3) are inherited by any open sub-

group of G, we see that we may prove just the center-triviality of G. The
proof is divided into two steps.

Step 1. Let A Z[[G]] be the complete group algebra of G over the
ring of p-adic integers Z. Then A is a local pseudocompact ring whose
unique open maximal ideal R is the kernel of the canonical augmentation
A- /p. The following ’Nakayama lemma’ due to A. Brumer [1] plays a

crucial role in this step.
Lemma 2 (Brumer). Let A be a pseudocompact ring with radical R, M a

pseudocompact A- module, and let x, ,x, M. If M/RM is (topologically)
generated by the images of x,... ,x,, then M Ax / + Axe.

Proof See [1] Corollary 1.5.
It is remarkable that, in contrast to the usual Nakayama lemma, the

above Brumer’s lemma does not assume the finite generation of M as a

A-module, but does imply it.
Lemma 3. Let G be a pro-p group satisfying the conditions (1),(2) of

Theorem 1. Then the trivial A-module Z has a finite free resolution

(F): O-F,-F,_--, ...-,Fo-*Z,-0,
where each F is a free A-module offinite rank (0 <-- i g n).

Proof We shall follow an argument in Gruenberg [3] 8.1 carefully in
our context.

1 . We first show by induction on N >_ I that there is an exact sequence
of A-modules

(A): OK-F_--, "--FoZ-0,
in which F (0 g i -< n- 1) are free of finite ranks and K is arbitrary. If
N 1, then we can take as Fo A, K the augmentation ideal of A. So
we assume that the exact sequence (A) is obtained. To obtain (A+), it suf-
fices to show that K in the sequence (A) is finitely generated. As the
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category of pseudocompact A-modules is enough projective [1], we get the
exact sequence

goma(F_, F) --* Homa (Ks, F) -- Ext(Z, F) --* O.
Here Homa denotes the continuous G-homomorphisms. Moreover, by [1]
Lemma 4.2, we have Ext(Zp, Fp)= HN(G, F). Since the first and the
third terms are finite, Homa(Kg, Fp) turns out to be a finite set. From this
the finiteness of KN/RK follows. Thus, by Brumer’s lemma, Kn is finitely
generated over A.

2. From 1 , we get an exact sequence

with Fi free A-module of finite rank (i >_ 0). We claim that K "= Image(Fn
---* Fn_x) is a projective object as a pseudocompact A-module. For this, it
suffices to show that for every short exact sequence 0---* A B C---* 0 of
finite A-modules, the induced map Homa(K, B) Hom6(K, C) is surjec-
rive ([1] Proposition 3.1). We have an exact sequence

Homa(F_, B) --* Homa(K, B) ---* H’(G, B) --o 0

Homa(Fn_, C) -’-* Homa(K, C) -- H(G, C) --* O,
and the first and the third vertical arrows are surjective. (Use the condition

(1) of Theorem 1 for the latter.) Thus our assertion follows.
3. Since the above K is obviously finitely generated, it remains to show

the freeness of K. We can choose xx,... ,xm K such that the images

2i(i 1,...m) in K/RK form a basis. Then by Brumer’s lemma, we get

K Axx + + Axe.
m

Define Fn to be i__ Axi, and let Q be the kernel of the canonical projection
F---* K. Then since K is projective, F is A-isomorphic to K] Q. Therefore

F/RF = K/RK Q/RQ.
Comparing the dimensions (< oo), we get Q/RQ 0. It follows from Brum-
er’s lemma again that Q 0. Thus K is free of finite rank.

Step 2. We next apply the argument of J. Stallings [6] in our profinite
context. This method was previously considered in [5] for giving a simple
criterion for center-freeness of certain profinite fundamental groups of
algebraic varieties (see Remark 2 below).

We first begin by an arbitrary profinite group G. For an open normal
subgroup U of G and a positive integer a, let T(Z/paZ[G/U]) denote the
quotient of the group algebra Z/paZ[G/U] by the submodule generated by
the xy yx (x, y Z/pZ[G / U]). Then the canonical projections

Tv, Z/P’Z[G / U] -- T (Z/pZ[G / U]) (n > O, U G open)
form an inverse system of surjections of finite abelian groups. Taking the
inverse limit, we obtain a profinite abelian group T (Z[[G]]) together with
a continuous surjective homomorphism

T Z[[6]] --* T (Z[[G]])
such that T (/2 + p) T(/2) + T(p), T(/2/2) = T (/z) for ,/2 Z[[G]].
Each element of T(Zp[[G]]) may be viewed as a Z-valued measure on the
space of the conjugacy classes of G. (See [5] {}1.3 for a little more leisured
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construction of the ’profinite Hattori-Stallings space’ T(Zp[[G]]).) We let
A Z[[G]].

Definition. Let P be a finitely generated projective pseudocompact
A-module and let f" P-- P be a A-endomorphism. We define the profinite
Hattori.Stallings trace tr(f) T(A) as follows. Choose a pseudocompact
A-module Q with P Q ASm for some m N, and let)-- (f, 0) ASm

---* A Sm be the 0-extension of f Let (fi) Mn(A) be the matrix representa-
tion of ] and define tr(f)= =1 T(L,). t is easy to see the well-
definedness of tr(f) and the properties tr(f + g) tr(f) + tr(g),
tr (fg) tr (gf) for two A-endomorphisms f, g of P.

Lemma 4. Let G be a profinite group, and p be a prime number. Suppose
that the trivial A-module has a finite free resolution

(F O--. F,-. - FI-. Fo--. Zt-- O,
where F(1 g i < n) are finitely generated free A-modules, with Euler charac-
teristic : (-- 1)rank(F) :/: O. Then G has trivial center.

Proofl This is Theorem 1.3.2 of [5]. We repeat the proof briefly for the
convenience of the reader, which is just a profinite modification of Stallings

[6]. Let 7" be any central element of G, and consider two A-endomorphisms
(f), (gi) of the complex (F) such that f identity and gi multiplication
by 7" on F for i- 0,...,n. By standard argument in homology theory, we

can construct a chain homotopy between (f/) and (gi) to obtain

0 Z (-- 1) tr (f) Z (-- 1) tr (g) X" ( r).
Here 61 (resp. 6r) is the Dirac measure supported at the conjugacy class {1}
(resp. {7"} ). Since X :/: 0, and since the (profinite) space of the conjugacy
classes of G is Hausdorff, we get 7" 1.

Proof of Theorem 1. By Lemmas 3 and 4, we may just assure
Y. (-- 1)irank(F) (-- 1)idimH(G, F).

But we know by [11 Lemma 4.2 that Hi(G, F) Ext’a(Z, F). Here Ext
is the i-th extension group in the category of pseudocompact A-modules, and
can be computed from the resolution in Lemma 3 in the usual way. Thus our

assertion certainly follows.
Remark 1. A. Pletch (J. Pure and Appl. Algebra, 16) showed the exis-

tence of a finite free Z[[G]]-resolution of Z for certain profinite groups G
including pro-p groups, in which some delicate arguments on duality theory
(due to P. Gabriel) were involved. In our proof of Lemma 3 above, we res-

tricted ourselves to the case of pro-p groups, and modified part of Pletch’s
argument along [3] to be able to avoid delicate discussion on duality theory.

Remark 2. The existence of finite free resolution of Zp can be also
assured for profinite groups isomorphic to the pro- completion of -good
groups of type FL ({" a ’full’ class of finite groups containing Z/pZ). See [5]
1.3.3.

Application to Galois groups. Let k be a number field of finite degree
over the rationals, S a set of places of k containing those lying over a prime
p. Denote by ks(P) the maximal pro-p extension of k unramified outside S,



282 H. NAKAMURA [Vol. 68(A),

and by Gs the Galois group Gal(ks(P)/k). Then it is known that the Euler
characteristic of Gs is equal to r2 (r2" the number of complex places of k).
Therefore, by the above theorem, if k is not totally real, then Gs(p) has tri-
vial center. This gives an alternative proof of Theorem 2.2 (1) of [7]. In [7],
Yamagishi also considered the totally real case, and showed that in that case
the centerfreeness of Gs is naturally related with the Leopoldt conjecture.
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