
No. 1] Proc. Japan Acad., 58, Ser. A (1992) 15

4, On the Divisor Function and Class Numbers
of Real Quadratic Fields. IV
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Department of Mathematics and Statistics, University of Calgary

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 13, 1992)

In this paper we conclude the investigation begun in [2]-[3] and [7].
We refer the reader to [2]-[3] for the notation and background material
used herein.

Our first result generalizes Corollaries 2.1 and 2.2 of [7], (which we
were only able to prove for ERD-types therein), and give, thereby, cor-
rections to [4, Theorems 2.1-2.2, pp. 120-121]. First we deal with the
case where dl (mod 4).

Theorem 1. Let d--b2+rl (mod4) with Irl2b and r odd. Set
A=(2b--lr--ll)/2 and assume P(A)x(d)=(2, A} where I is the ideal
over 2 and P--{primes p p A}. Thus

h(d)_r(A).

Proof. Since A /- then P(A) ((d)P(A) x(d), and so the
result now follows from Theorem 2.1 of [7].

Remark 1. The weaker hypothesis given in Theorem 2.1 of [4] (viz.,
that no divisor m of (2a-It- 1 ]/4) with 1 m(2a-Jr-- 1 I/4) appears in
(d)), is insufficient to yield the conclusion therein, which is weaker than
Theorem 2, below. For example if d=385=20-15 then A=6. Here
h(d)=2 but r(A)--l--3. The problem is that 4 e (d). In fact any time
that there is a divisor of A (not just A) with lmA with m e (d)
then Theorem 2.2 of [4] ails to hold.

Theorem 2. Let d--b2+r=_l (mod4) with Irl2b and r odd. Set
A=(2b-lr-ll)/4, P--{primes p :plA} and assume P(A)I(d)-{1, A}
then

h(d)_r(A)-2
where n=n(A).

Proof. This follows from Theorem 2.1 of [7].
Remark 2. Corollary 2.2 of [7] is immediate from the above. Thus

Theorem 1-2 correct [4, Theorems 2.1-2.2, pp. 120-121] for the cases where
r is odd. Now we look at the case where r is even.

Theorem 3. Let d--b+r with r even and Irl2b and set

A=2b--lr--l! if dl (mod 4)}.[b-lr/4--11 if dl (mod 4)
Assume that if m lA where m)l is divisible by only unramified primes
then m _(d) (i.e., no such m is the norm of a primitive principal ideal).
Then with n=n(A),
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Hence

h(d)_r(A)-2

Proof. Since aA=(b+aay--d where a--1 if r0 and --1 otherwise,
then A--=p with e0, where (/p)=/=--I or lin and e-I when-

ever (/p)=0. Moreover since N(b+aa+/d)=aaA then there are p
above p such that = = 1.

Now assume that

i=l i=l

with lf;_ ge_ Let {p}= be all of the unramified primes in {p}=
and order those primes so thatfg for i=1,2, ...,s0 and fg for i=
s0+l,...,s. Also order the ramified primes so that fg for i=s+l,
., s and so that f g or i=s 1, ., s. Thus (*) becomes,

80 81 8

(**) 1 p-"H p{- ’-:’ p=I.
i=l i=l i=so+l i=s

If m=N(I)>/2 then m A since m divides A< J. Thus f e
and g=0 for i=1,2, .,So g=e and f=0 for i=so+l, .,s, and s=s
i.e., (**) becomes,

80 81

i=1 i=So+l i=Sl+l

80 81

Pi
i=l i=so+l

Since 1 then 1 S0 J1 H soi=l pi2ei H s,i=so+l pi2et J 1. By hypoth-
esis no such ideals can exist. Therefore one of J 1 or J 1, say J 1
i.e., So=S and (***) becomes

80 8

i=l so+l

We have shown that the only possible equivalences among the 1=/=
{ for 0<fe areHi---1

80

i=l i4 ie"

where q] t5 q]’= {s0+ 1, ., s} and ’=. (When J 1 a similar resul
follows.)

There are clearly 2- such combinations where n=S-So.

The above then completes the correction of [4] and concludes the in-
vestigation of class numbers and the divisor function begun in [2]-[3] and
[7], including a complete generalization for ERD-types.

Remark 3. In [2]-[4] we have assumed d to be square-free since we
feel that the essential and interesting problems involve the analysis of
the class number of the real quadratic fields. Thus, althoagh Halter-
Koch’s [1] looks at seemingly more general results by allowing d to be
non-square-free, the only interesting applications are to maximal orders
and they are the only applications given in [1]. Hence although our
results can be easily generalized to arbitrary orders we feel that this is
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an uninteresting exercise.
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